

Environmental Services

Factual Report on Ground Investigation

Stonehaven River Carron & Burn of Glaslaw Flood Alleviation Scheme -Ground Investigation

Volume 1 of 2

Contract No: 018936/5414 January 2014

Client: Aberdeenshire Council Engineer: JBA Consulting

Environmental Services

Factual Report on Ground Investigation

Stonehaven River Carron & Burn of Glaslaw Flood Alleviation Scheme -Ground Investigation

Client: Aberdeenshire Council – Infrastructure Services Woodhill House, Westburn Road Aberdeen AB16 5GB

Engineer: JBA Consulting The Old School House, St. Joseph's Street Tadcaster, North Yorkshire LS24 9HA

Issue	Prepared By	Checked By	Approved By	Issue Date		
Issue 01 (Draft)	M Bridgman	A Paice		03 January 14		
Issue 02 (Final)	M. Bridgman	A. Paice	A. Stevens	30 January 14		

CONTENTS

1.0	Introduction	1
2.0	Site Setting	2
2.1	Site Location	2
2.2	Site Description	2
2.3	Review of Published Geology	2
3.0	Fieldwork	2
3.1	Exploratory Holes	3
3.2	In Situ Testing	3
3.3	Groundwater Monitoring	4
3.4	Surveying	4
4.0	Laboratory Testing	4
4.1	Geotechnical Testing	4
4.2	Geoenvironmental Testing	5
5.0	References	6

APPENDICES

- Appendix 1 Limitations and Exceptions to the Investigation
- Appendix 2 Drawings
- Appendix 2.1 Site Location Plan
- Appendix 2.2 Site Layout Plan
- Appendix 3 Site Work Methods and BS 5930 Logging Guides

Appendix 4 - Exploratory Hole Records

- Appendix 4.1 Key to Exploratory Hole Records &
- Soil and Rock Description Terminology
- Appendix 4.2 Cable Percussion / Rotary Core / Rota-Sonic Borehole Logs
- Appendix 4.3 Observation Pit Logs

Appendix 5 - Photographs

- Appendix 5.1 Rotary Core Photographs
- Appendix 5.2 Observation Pit Photographs

Appendix 6 - In Situ Test Results

- Appendix 6.1 SPT N Value Graphical Presentation
- & SPT Hammer Energy Measurement Report
- Appendix 6.2 Variable Head Permeability Testing

Appendix 7 - Groundwater Monitoring

Appendix 7.1 – Groundwater Monitoring Result Sheets

Appendix 8 - Geotechnical Test Results

Appendix 9 - Geoenvironmental Test Results

1.0 INTRODUCTION

This report is prepared by Costain Environmental Services (CES) and presents the results of a ground investigation carried out in the town of Stonehaven, Aberdeenshire. CES were instructed by Aberdeenshire Council (the Client) on 12th September 2013 and the investigative work was carried out under the technical direction of JBA Consulting (the Engineer).

The services provided comprised a ground investigation to assist with the design of proposed flood defences associated with the River Carron and the Burn of Glaslaw.

The scope of the ground investigation was defined in the Engineer's specification, reference: SH-JBA-00-00-SP-GE-0003-D2_Specification _P1.0, date unrecorded, together with all associated schedules and drawings.

The fieldwork was carried out between 16th October and 8th November 2013 and comprised cable percussion boring, rota-sonic drilling, rotary core drilling and hand dug pits with associated sampling and in situ testing. Post fieldwork groundwater monitoring was carried out weekly between 27th November and 13th December 2013.

This report details the scope of the works undertaken together with factual results of the fieldwork, in situ testing and laboratory testing. Electronic digital data is provided in AGS 3.1 format and is emailed together with this report.

This report has been prepared, checked and approved by authorised personnel in accordance with our quality system as outlined in our proposal for the work.

Geological formation names have not been applied to the strata encountered. The brief did not require an interpretation of the factual information contained in this report.

2.0 SITE SETTING

2.1 Site Location

The site is located immediately south of Stonehaven town centre in Aberdeenshire, Scotland as indicated on the Site Location Plan in Appendix 2.1. The approximate National Grid Reference of the site centre is NO 872 857.

2.2 Site Description

At the time of undertaking the investigative work, the site typically comprised public highways, parkland, woodland, residential gardens and car parks. The site is bounded to the south and west by the Woods of Dunnotar, to the north by Stonehaven town centre and to the east by residential properties close to the sea front.

The River Carron bisects the site, flowing from west to east and discharging into the sea at the eastern edge of the site. The Burn of Glaslaw runs from the high ground to the south of the site, down to the centre of the site where it flows into the River Carron. The exploratory hole locations and general site layout are shown on the Site Layout Plan and Exploratory Hole Location Plans included in Appendix 2.2.

2.3 Review of Published Geology

The published geological map covering the site, (British Geological Survey Sheet 67, Solid and Drift, Stonehaven (1999)), indicates the site to be underlain by Superficial Deposits including the Mill of Forest Till Formation, Alluvium, Drumlithie Sand & Gravel Formation, River Terrace Deposits and Raised Marine deposits. The indicated solid geology is shown to include the Carron & Cowie Sandstone Formations and the Strathlethan Sandstone Member of the Dunnotar Castle Conglomerate Formation

3.0 FIELDWORK

The fieldwork was carried out in general accordance with the procedures set out in BS 5930:1999+A2 (2010).

A summary of the fieldwork is given below with detailed method specific procedures provided in Appendix 3.

The exploratory hole positions were set out relative to existing features in general accordance with the provided Site Layout Plan and by agreement with JBA Consulting's representative during the fieldworks.

Costain Environmental Services

3.1 Exploratory Holes

At the location of each exploratory hole an inspection pit was hand excavated to a depth of 1.20m to confirm the absence of underground services. Details of these are given on the relevant exploratory hole log.

The following exploratory holes were carried out:

Hole Type	No. of Holes	Maximum Depth (m)	Remarks
Rota-sonic drilling	13	12.50	
Rota-sonic drilling with Rotary Cored follow on	13	15.00	
Cable Percussion boring with Rotary Cored follow-on	1	10.00	Modular CP rig used
Cable Percussion boring in restricted access areas	4	8.30	Modular CP rig used
Structural Observation Pits	12	1.70	Hand dug
Trial Pits in restricted access areas	1	1.50	Hand dug
Groundwater monitoring Installations	6	7.50	50mm / 19mm install in BH13. All others 50mm.

Details of the strata encountered, sampling, groundwater encountered and in situ testing are shown on the individual Exploratory Hole Records in Appendix 4.

Photographs of rock core and observation pits are presented in Appendix 5.

3.2 In Situ Testing

The following in situ testing was carried out in accordance with the relevant methodology described in Appendix 3:

Test Type	No. of Tests	Remarks
Standard Penetration Test*	181	Calibration certificate in Appendix 6.1
Variable Head Permeability Test	6	Carried out in 50mm standpipes

The test results are presented in Appendix 6 and on the exploratory hole records.

*Standard Penetration Tests (SPT) were carried out in accordance with the Engineer's specification, the results of which are summarised on the relevant exploratory hole logs.

Costain Environmental Services

In accordance with BS EN ISO 22476: Part 3, a graphical presentation of the SPT test results is presented in Appendix 6.1. The energy ratio of the hammer (E_r) is presented on the individual borehole record and the SPT Hammer Energy Measurement Reports are presented in Appendix 6.1.

3.3 Groundwater Monitoring

Groundwater strikes encountered in boreholes during drilling operations are recorded on the relevant exploratory hole logs in Appendix 4.

Following completion of the boreholes, 6no. groundwater standpipes were installed in accordance with the Engineer's instructions, details of which are given on the exploratory hole logs. 50mm diameter standpipes were installed in BH6, BH8, BH15, BH18 & BH21B. A combined 19mm piezometer / 50mm standpipe was installed in BH13.

On completion of the fieldwork, groundwater levels were monitored on three occasions as specified by the Engineer. Groundwater sampling was carried out on 27th November, 6th December & 13th December 2013 from the 6no. installations. On the 13th December the installation in BH6 in the verge of Carron Terrace was found to have been damaged by vehicular traffic and could not be monitored. The groundwater monitoring results are presented in Appendix 7.1.

3.4 Surveying

On completion of the fieldwork, locations of the exploratory holes were surveyed using Trimble GPS survey equipment. Coordinates and ground levels relative to Ordnance Datum are presented on the Exploratory Hole Records in Appendix 4.

4.0 LABORATORY TESTING

4.1 Geotechnical Testing

The following geotechnical testing was scheduled by JBA Consulting and carried out in accordance with BS1377 (unless otherwise stated) at Costain Environmental Services' UKAS accredited laboratories (No.1489) and K4 Soils UKAS accredited laboratories (No. 2519). Several samples were affected by restrictions, and the list of restrictions (with associated Engineer's instructions) is included with the lab test results in Appendix 8.

COSTAIN

	•	
Test Type	No. of Tests	Remarks
Natural Moisture Content	69	
Liquid and Plastic Limits	49	
Particle Size Distribution (wet sieving method)	167	
Compaction (2.5kg rammer)	2	
One dimensional consolidation	11	
Unconsolidated undrained triaxial	10	
Organic Matter Content	11	
Point Load Index	15	Up to 10no. individual tests per sample, depending on available sample material.
рН	16	Testing carried out by i2 Analytical Ltd in accordance with BRE Special Digest
SO4	18	1.
Triaxial cell / Permeameter Constant Head Permeability Testing	0*	Tests cancelled by the Engineer. See restriction in Appendix 8.

The results of the testing are presented in Appendix 8.

4.2 Geoenvironmental Testing

The following chemical testing suites were scheduled by JBA and carried out by i2 Analytical Ltd UKAS accredited chemical laboratories (No.4041).

- Suite A (waters): pH & SO4
- Suite F (waters): Arsenic, Boron, Cadmium, Chromium (total), Copper, Lead, Mercury, Nickel, Zinc, pH, SO4, TPH, PAH (USEPA 16), Phenol, total Cyanide.
- Suite E (Soils): Arsenic, Boron, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Zinc, pH, 2:1 SO4, Organic Matter Content, TPH, speciated PAH (GC FID), Phenol, Cyanide, Asbestos Screen.
- pH, SO4 (water soluble), Organic Matter Content.

The results of the testing are presented in Appendix 9.

5.0 **REFERENCES**

Association of Geotechnical and Geoenvironmental specialists, Electronic Transfer of Geotechnnical and Geoenvironmental Data. (AGS Edition 3.1 or 4.0).

http://www.bgs.ac.uk/opengeoscience/home.html?Accordion2=1#maps

British Geological Survey Sheet 67, Solid and Drift, Stonehaven (1999)

BRE Special Digest 1:2005: Concrete in aggressive ground. Part 1.

BS 5930:(1999) + A2:(2010), Code of Practice for Site Investigations

BS 1377: Parts 1 to 9 (1990), Methods of Tests of Soils for Civil Engineering Purposes

BS EN ISO 14688: Part 1: (2002), Identification and description of soil.

BS EN ISO 14688: Part 2: (2004), Principles for a classification of soil.

BS EN ISO 14689: Part 1: (2003), Identification and description.

BS EN ISO 22475: Part 1: (2006), Technical principles for execution.

BS EN ISO 22476: Part 3: (2005), Standard penetration test.

ISRM RTH 325-89 SR12, Suggested Method for Determining Point Load Strength.

For and on behalf of Costain Environmental Services:									
Prepared By:	M. Bridgman								
	Senior Engineering Geologist								
Checked By:	A. Paice								
	Senior Engineering Geologist								
Approved By:	A. Stevens								
	Geotechnical Manager (North)								

Appendix 1

Appendix 1 - Limitations and Exceptions to the Investigation

Limitations and Exceptions to the Investigation

The Client has requested that a ground investigation be performed in order to investigate ground conditions at the site to provide information to assist in design of the proposed development. This report is not a comprehensive site characterisation and should not be construed as such.

This ground investigation was conducted and this report has been prepared for the sole internal use and reliance of the Client. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Costain Environmental Services. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

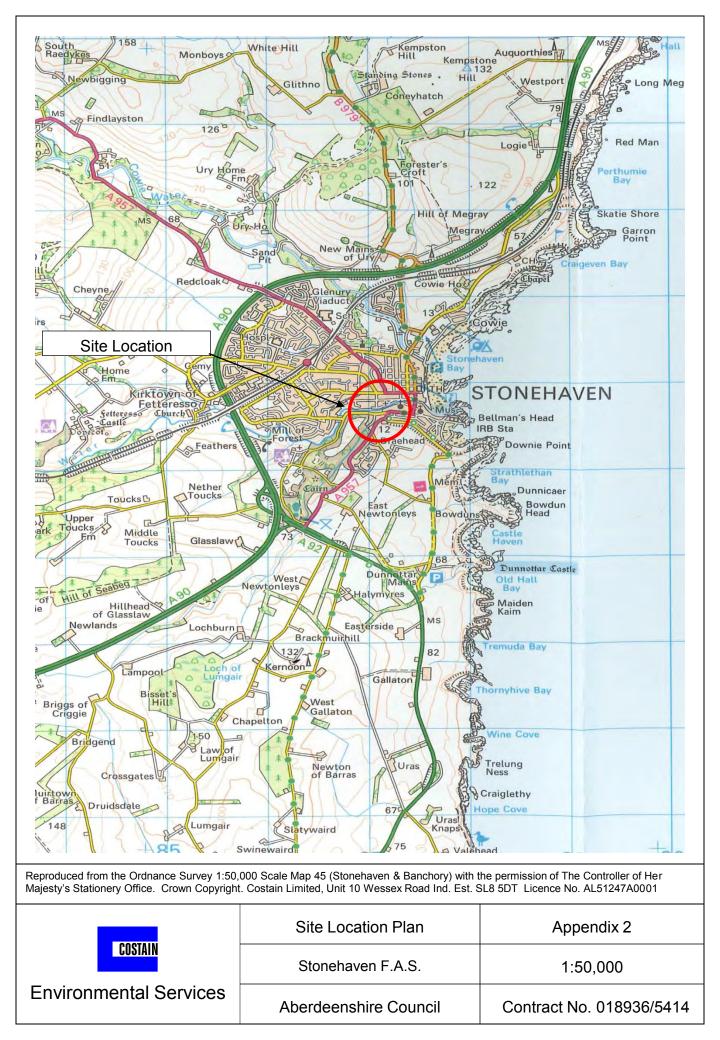
The report represents the findings of experienced geotechnical contractors. Costain Environmental Services does not provide legal advice and the advice of lawyers may also be required.

The work carried out for this ground investigation can only investigate and monitor a small part of the subsurface conditions. Certain ground conditions may have been outside the very limited portion of the subsurface investigated or monitored, latent at the time of this work or only partially intercepted by the works and thus their full significance could not have been appreciated. Groundwater levels are particularly susceptible to variation. Accordingly, it is possible that Costain Environmental Services work, whilst fully appropriate for this ground investigation, failed to indicate the presence of particular ground conditions.

Costain Environmental Services believes that providing information about limitations is essential to help the Client identify and thereby manage its risks. These risks can be mitigated – but they cannot be limited, through additional research. Costain Environmental Services will on request advise the Client of the additional research opportunities available, their impact on risk, and their cost.

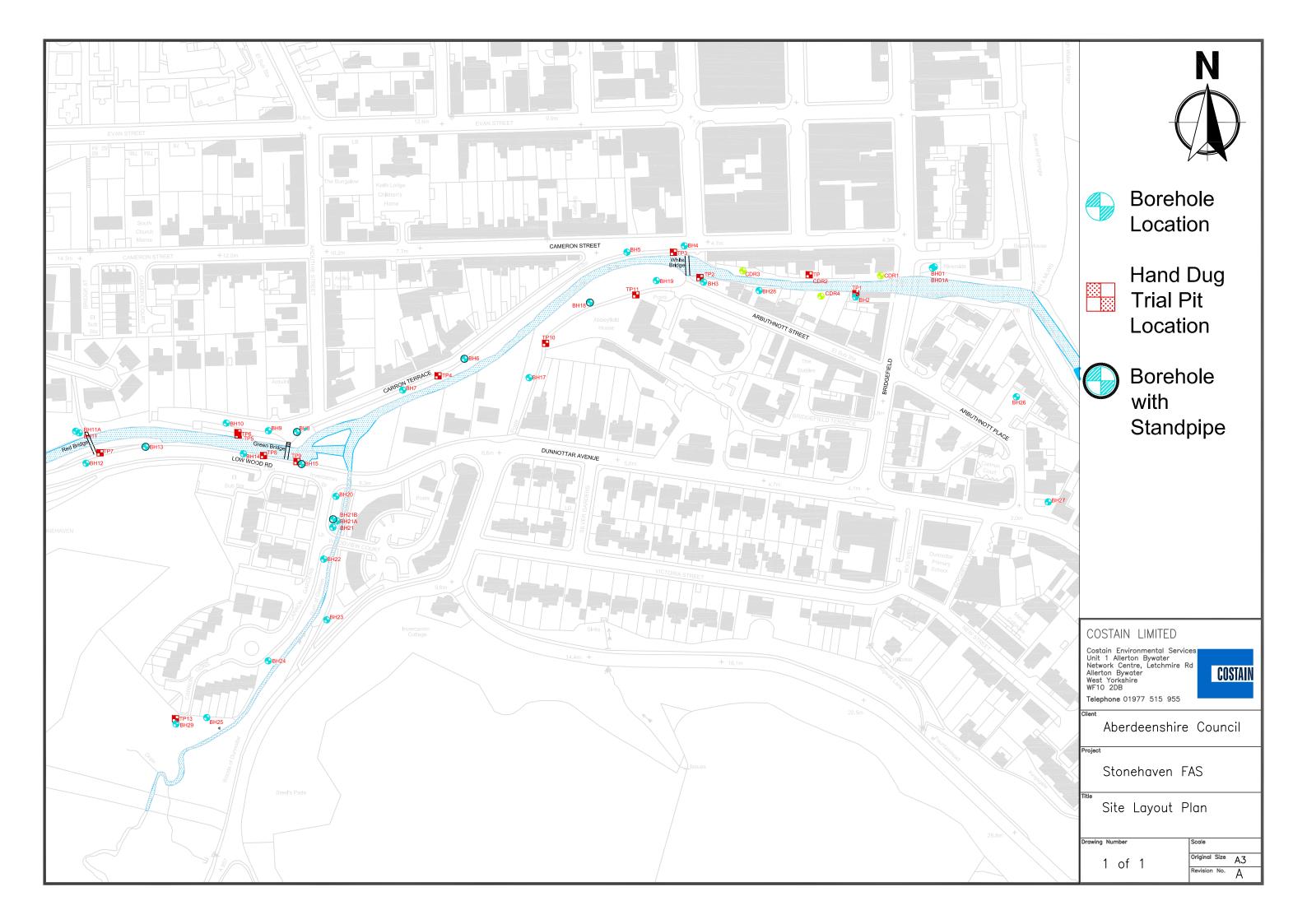
The ground investigation was specifically limited by the following:

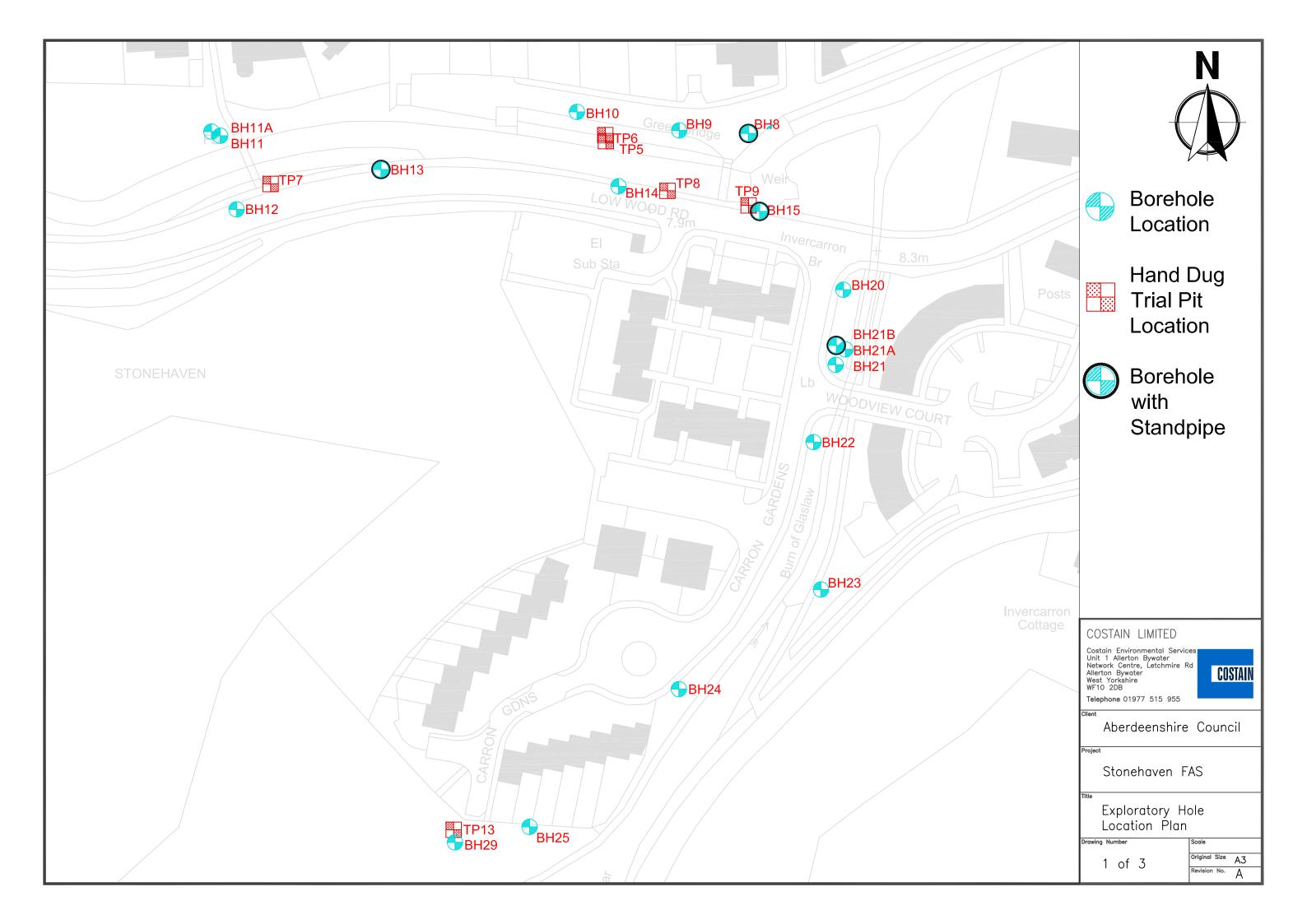
- The location and type of exploratory hole was selected by others.
- The laboratory testing was scheduled by others.

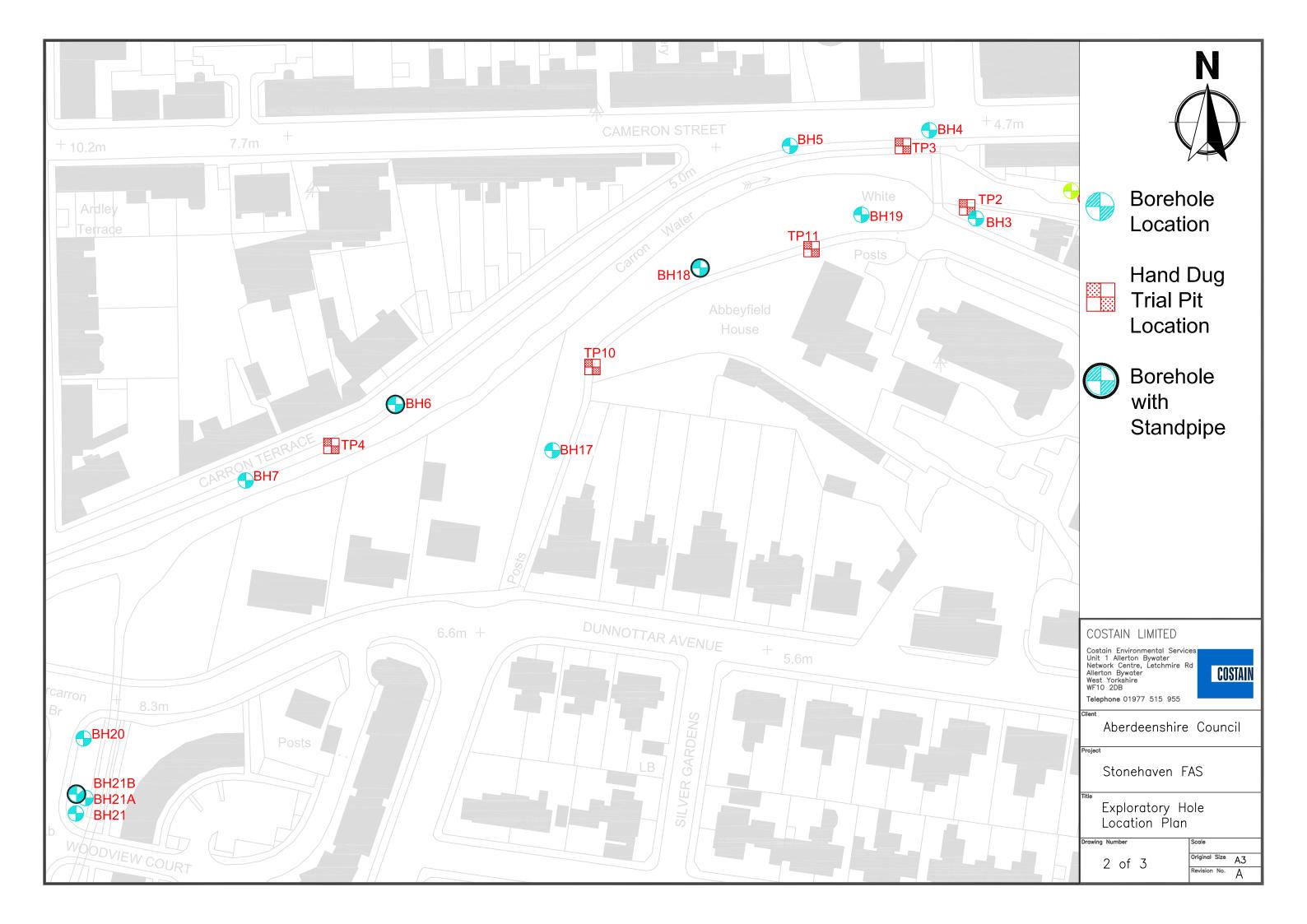


Appendix 2 - Drawings

Appendix 2.1


Appendix 2.1 - Site Location Plan





Appendix 2.2

Appendix 2.2 - Site Layout Plan

Appendix 3

Appendix 3 - Site Work Methods and BS 5930 Logging Guides

A1.0 FIELDWORK METHODS

A1.1 Inspection Pits

An inspection pit is dug using hand tools at the location of every borehole or dynamic probing position to check for the presence of underground services with the exception of areas where the risk of encountering underground services is deemed sufficiently low as to not warrant an inspection pit.

Inspection pits are scanned with a Cable Avoidance Tool (CAT) and Genny at the surface before digging commences and at 300mm intervals to the base of the pit.

Where services are located in the inspection pit they are recorded on the engineer's log and photographed where necessary. The pit is then backfilled and reinstated at the surface and the borehole/dynamic probe will be moved to a new position.

A1.2 Cable Percussion Boring

Cable percussion boring is commonly used for constructing boreholes through soils and weak rocks where a depth of more than approximately 3.0m is required.

The rig generally consists of a diesel powered winch and tripod frame with running wheels that are permanently attached allowing the rig to be towed behind a suitable vehicle. When the rig has been towed into position it is erected using its own winching system.

Boreholes are advanced through cohesive soil by the percussive action of the cable tool. The force of the cylindrical tool as it is dropped into the borehole cuts a plug of soil that is removed by the tool. In poor consistency soil casing is often used to prevent the sides of the borehole collapsing. Casing may be deemed to be un-necessary in cohesive soils of adequate consistency as the borehole sides will be self supporting.

In non-cohesive soils the borehole is advanced using a shell or bailer. When it is dropped into the borehole, material enters the shell and is retained by use of a clack valve. The water level in the borehole is above that in the surrounding soil to allow for temporary reductions in the head of water as the shell is withdrawn from the borehole.

Water should always flow from the borehole into the surrounding soil at all times to prevent loosening of the soil at the base of the hole. Casing is always advanced with the borehole in granular soil to that material is drawn from the base, rather than the side, of the borehole.

Obstructions to boring are overcome by fitting a heavy chisel with a hardened cutting edge to the base of the percussion tool.

Borehole diameters tend to vary from 6" to 12" however 6" and 8" are most common.

Where suspected contamination is encountered in near surface material the borehole will generally be commenced in a larger diameter until the base of the contaminated layer is reached, the borehole will also be cased to the base of this layer. An impermeable plug, usually bentonite, will then be placed at the bottom of the borehole and left to go off before drilling is recommenced in smaller diameter. This "clean drilling" method reduces the likelihood that a pathway will be created for contamination to migrate down the borehole.

The borehole depth, casing depth and groundwater level is measured at start of every working shift and recorded on the drillers daily record.

Cable percussion boreholes allow soil sampling, groundwater sampling and Standard Penetration Testing (SPT) in addition to installation of groundwater/gas monitoring standpipes or piezometers and other specialised monitoring equipment.

A1.4 Rotary Drilling

Rotary drilling is generally employed for exploratory holes extending into rock strata, although rotary drilling can also be used in both granular and cohesive soils. Rotary drilling utilizes a rotating drill bit at the base of the borehole to advance the borehole. A drilling fluid is used to cool and lubricate the drill bit and in some cases stabilise the borehole sides prior to advancement of casing.

Commonly used drilling fluids are air, mist, water, mud, foam and polymer which are introduced to the borehole via the hollow drilling rods.

Open hole rotary drilling utilises a tricone drill bit or down the hole hammer to rapidly construct a borehole for the installation of monitoring equipment, carrying out of *in situ* tests, probing for voids or reaching a suitable depth where rotary coring can commence.

Rotary coring utilises a double or triple barrelled tungsten or diamond impregnated core bit with a non-rotating inner core barrel fitted with a plastic sample liner. On completion of a core run the liner containing the sample is extracted and stored in a core box where it can be stored before it is photographed, logged and tested.

A1.5 Rota Sonic Drilling

Rota Sonic drilling is generally employed for all strata types as this technique is able to drill through, and recover samples from, most types of soil and rock strata. This drilling technique employs a combination of high frequency resonance (sonic) and rotation of the drill bit to penetrate the strata. Samples from softer strata are recovered in a hollow sample barrel similar to dynamic sampling techniques, while harder strata are drilled using conventional rotary drilling techniques detailed above. Sonic boreholes allow soil sampling, groundwater sampling, Standard Penetration Testing (SPT) and open tube sampling in addition to installation of groundwater/gas monitoring standpipes or piezometers and other specialised monitoring equipment.

A1.7 Standard Penetration Testing

The Standard Penetration Test (SPT) can be carried out in most forms of borehole in accordance with the methodology recommended by BS EN ISO 22476: Part 3: (2005).

The SPT determines the in situ resistance of soil to a 50mm diameter split-spoon (S) or solid cone (C) being driven by 63.5kg hammer with a 750mm drop.

The result of an SPT is expressed as an N value which is defined as number of blows needed to obtain 300mm of penetration (the main drive) beneath the initial seating drive of 150mm which is utilized to penetrate any disturbed material at the bottom of the borehole.

The seating drive and main drive are usually recorded in six increments of 75mm, the last four of which are added together to give the N value.

The split spoon sampler is usually used in cohesive soils allowing a sample of the material that was tested to be obtained for observation and testing. The solid cone is usually used where the test is conducted in granular soils or weak rocks.

In granular soils the N value obtained from the SPT is used to assess the relative density of granular soils as shown in the following table:

Term	SPT N-value
Very Loose	0 – 4
Loose	4 - 10
Medium dense	10 – 30

Dense	30 – 50
Very Dense	>50

Where the seating drive has been completed the main drive is terminated if 50 blows have been carried out before the full penetration of 300mm is achieved. The penetration for 50 blows is recorded and an approximate SPT value can be calculated by linear extrapolation of the number of blows for the partial test drive. If the seating drive is not completed at 25 blows, the penetration is recorded and the main drive is started immediately.

For tests in weak rocks the main drive should only be terminated after 100 blows where the penetration of 300mm has not been achieved.

Test results are presented on the logs in the following formats:

(S)N=24(11,11,6,6,6,6)

Denotes a split spoon test (S) and a calculated N value of 24 followed by the individual blow counts for each increment in the seating drive and main drive.

(C)50/89mm(13,11,25,25)

Denotes a cone test (C) and the maximum blow count in soil of 50 in the main drive followed by the penetration for 50 blows. Individual blow counts for each increment are also shown.

A1.15 Variable Head Permeability Testing

The determination of in situ permeability by tests in boreholes involves the application of a hydraulic pressure in the borehole different from that in the ground and the measurement of the rate of flow due to this difference.

The pressure in the borehole may be increased by introducing water into it; a falling head test, or decreased by pumping water out of it; a rising head test.

The technique is only applicable to measurement of the permeability of soils below groundwater level.

When carrying out the test the first operation is to add water to the borehole or piezometer (falling head test) or to bail or pump out the water (rising head test). The head in the borehole is then allowed to equalise with that in the ground, the actual head being measured at intervals of time from the commencement of the test.

The permeability can be calculated using the following equation: k = A/FT

Where:

k = the permeability of soil

A = the cross sectional area of the borehole casing or standpipe as appropriate.

F = the intake factor (see below)

T = the basic time factor (see below)

The intake factor is calculated based on the borehole casing/piezometer conditions and the ground conditions when the test is carried out. The calculations for this are given in detail in Figure 6 of BS 5930+A2:1999 (2010).

The basic time factor T is taken to be the value of elapsed time, t, corresponding to a value of H/H_0 of 0.37 where H_0 is the head at the start of the test and H is the head at any time, t, which has elapsed since the test began.

A1.20 Groundwater and Gas Monitoring

When groundwater is encountered during drilling work, drilling stops and the depth to groundwater and the casing depth is measured. The groundwater level is then measured at 5 minute intervals for 20 minutes to record rate of inflow. Groundwater levels are also measured at the start and end of every drilling shift.

The symbols on the log to denote the groundwater strike and rise are as follows:

7 Depth of groundwater strike

On completion of the borehole, it can either be backfilled or installed with a groundwater/gas monitoring piezometer or standpipe.

A groundwater monitoring standpipe usually consists of sections of plain and slotted pipe connected together with the slotted section set in a porous filter medium, known as a response zone, to allow water to flow into the standpipe where it can be monitored. Response zones are normally targeted to monitor groundwater from a particular strata or soil type; as such a bentonite seal is normally placed above and below the response zone. Where the bottom of the slotted section of the standpipe is placed at, or close to, the bottom of the borehole a bentonite seal beneath the response zone is often not required.

A porous groundwater monitoring piezometer is similar to a standpipe but consists of a 300mm porous piezometer tip placed on the end of a plain pipe. They are usually narrower in diameter than standpipes and are often used in narrower response zones and nested installations.

Response zones should never be constructed where they allow transmission of groundwater between contaminated and uncontaminated strata.

Groundwater monitoring is usually carried by lowering a dip meter down the hole until it signals that groundwater has been reached. Alternatively, groundwater can be continually monitored by leaving a pressure transducer, known as a diver, in the borehole which will take a pressure reading at set intervals for a set period of time. The data can then be downloaded at a later date.

Groundwater sampling can be carried out by using a bailer, Waterra tubing, or peristaltic pump. Prior to sampling the volume of groundwater in the well must be calculated and 3 well volumes must be removed to create a cone of depression and causing groundwater to flow into the installation. Where re-charge rates are slow, it may not be possible to remove three well volumes.

Where hydrocarbon contamination is known to be present, an interface meter should be used to measure the thickness of Light Non-Aqueous Phase Liquid (LNAPL) or Dense Non-Aqueous Phase Liquid (DNAPL). LNAPL should be sampled separately.

Gas monitoring can be carried out where a gas tap is present on top of a standpipe or piezometer. Gas monitoring is carried out by connecting either a Flame Ionisation Detector (FID) or Photo Ionisation Detector (PID) to the top of the borehole; numerous gases can be monitored depending on site specific requirements, flow of gases from the borehole can be measured using a flow-pod.

Gas monitoring must be carried out prior to removal of the gas tap for groundwater monitoring or sampling.

Vibrating wire piezometers measure groundwater level by converting water pressure to a frequency signal via a diaphragm, a tensioned steel wire, and an electromagnetic coil. A readout unit is then connected to the vibrating wire at groundwater to measure the frequency. Data-loggers can be connected to vibrating wires for continual monitoring.

A1.21 Samples

Various samples are taken during site investigation works and post fieldwork core logging to enable further inspection and the completion of laboratory geotechnical and geoenvironmental testing.

A bulk disturbed sample (B) comprises a 20 - 30kg bag of material, a disturbed sample (D) comprises a 1 - 2kg plastic tub and environmental sample (ES) comprises a 1 - 2kg plastic tub, a 250ml amber glass jar and 60ml amber glass jar.

A water sample (W) is taken during drilling work in conjunction with a water strike and comprises approximately 1I of water (where obtainable) stored in a plastic bottle; an environmental water sample (EW) is taken during a post site work monitoring visit after development of the monitoring well and comprises a 1000ml plastic bottle, a 1000ml amber glass bottle and a 20ml amber vial.

Core samples (C) are taken during detailed logging of rock cores that are obtained by rotary coring. Core samples will ideally have at least 2:1 length to diameter ratio for uniaxial compressive strength testing. Where this is not possible due to excessive fracturing of the core irregularly shaped samples of 1 - 2kg can be taken for point load testing. Samples are suitably wrapped to maintain natural moisture content.

Block samples (BLK) are usually taken in trial pits and comprise up to 20kg of cohesive soil that is cut, undisturbed, from the base of the pit and stored to maintain natural moisture content and structure. Where trial pits are being dug through weak and very weak rocks boulders of material can be recovered which can be treated as BLK samples and stored appropriately.

Undisturbed samples (U) are taken in boreholes by driving thin walled sampling tube using a down-the hole hammer. When the sample is retrieved, both ends of the sample tube are sealed in wax to maintain the natural moisture content. The number of blows taken to drive the sample and the percentage of sample recovery are shown on the borehole records.

U samples are denoted on the log in the following format:

*34/450mm

Denoting the number of blows and the recovery in millimetres.

Where undisturbed sampling is unsuccessful a disturbed sample is usually taken across the proposed depth of the undisturbed sample.

A2.0 BS 5930 Logging Guides

The following table taken from BS 5930+A2 (2010) Table 13, outlines the field identification and description of soils.

ell Group	Principal Soll			Visual identification	Relative Dens	tty/Consistency	-	tinuities			Colour	Composite	a Soli Types	Minor	Particle	Principal Boll	Minor	Stratum Name												
on Group	Туре	Particle Size (mm)		Visitin identification	Term	Field Test	Uiseen	m num or G		edding	Concur	(mixtures of b	(mixtures of basis soll types)		Shape	Туре	Minor Constituents	Stratum Hame												
Very Coanse Bolls	BOULDERS	Large boulder Bouider Cobble	e30	Only seen complete in pits or exposures Often difficult to recover whole from boreholes	None defined	Qualitative description of packing by inspection and ease of excavation	Describe spac such au fissun partings, isolat laminae, desic rootiets etc.	led beds or		e thickness of ordance with lefnition	Lightness: Light Dark	For midures invol solis see BS 5930	For midures involving very coarse solts see BS 5350 CH1.4.4.2		For mazules incoving very coalise software BS 5930 CM14.4.2		For matures involving very coarse solts see BS 5930 CI41 4.4.2		For macunes incoving very dualitie solts see BS 5930 CH1 4.4.2		For madulate hydrolog ymy doanie eolis ee BS 5930 Cl41 4.4.2		is see BS 5930 CI41 4.4.2		88 5990 CH1 44 2		Very angular Angular Subangular Subrounded	BOULDERS		Name in accordance with published geological maps, memois or sheet, explanation
7		63 Coarse			Borehole wi	5 SPT N Value		_				Term before principal soil	Proportion secondary (see	t i	Rounded Weil rounded		with rare													
1		Medium	20	Easily visible to naked eye	Very loose	0-4	1			Atemating layers of		slightly (sandy)	Note A)		Cubic	_	we some	For example:												
end and pavel	GRAVEL		6.3	Particle shape, grading can be described	Loose	4-10	Fissured Soit preaks int unpolished dis	o blocks along		different types		see Note B	5 - 20%		Flat Elongated	GRAVEL	we some	RIVER TERRACE DEPOSITS												
		Fine			Medium cense	10 - 30			Inter-	Pregual fied by thickness		see Note B	See Note C		Tabular		frequent or abundant	GLACIAL SAND A												
2		Coarse	0.63	Vaible to naked eye; no	Lar.				bedded or inter- laminated	added or equal	Chroma: Pinkish	very (sandy) see Note B	>20% See Note C	Terms car glauconitie micaceour		SAND		BRICKEARTH												
	SAND	Medium	0.2	ophesion when dry grading can be described	Dense	30 - 50	_			Otherwise thickness of and spacing	Yellowish Orangish Brownish	SAND and GRAVEL	About 50%	shely																
2		Fine	0.063	·	Very dense	>50	Sheared Soil breaks inti polished disco	b blocks along		between subordinate layers	Greenish Bluish Greyish	Term before	Proportion	aliantita (a)	acculted	-		WEATHERED LL												
		Coarse			Very soft	Finger easily pushed in up to 25mm; exudes between	poisned date			defined		principal soil type	Note A)	slightly (glauconitic) (glauconitic) very (glauconitic)	0)		Terms can include: ahell fragments pockets of peat	DARTFORD BILT												
			0.02	Only coarse silt visible with		Finger pushed in up to 10mm; moulded by Right finger pressure	Spacing scale of discontinuities		Spacing a	cale of bedding ickness		elightly (eandy) see Note D	<35%				gypsum crystals. fint gravel brick fragments	EMBANKMENT												
ĩ	SILT	Medium		hand lens; eshibits little plasticity and marked dilatancy; slightly granular or silky to the	8of		Term	Mean Spacing (mm)	Term	Moars thickness intel	1			Proportion	n defined on a site		piantio baga	LONDON CLAY FORMATION												
tend chy the		0.0063			touch; disintegrates in water; tumps dry quickly, potsesses ochesion but can	1	Thumb makes impression	Very widely	>2000	Very thickly bedded	>2000	1	(sandy) see Note D	35 65% See Note E	of materia subjective	specific basis or	SILT		ALLUVIUM											
			0.0063			be powdered easily between fingers	Film	eanity, cannot be moulded by fingers, role to a thread	Widely	2000 - 600	Thickly	2000-600			1	-				MADE GROUND										
		Fine				Fine .			11	Can be indented slightly by	Medium	600-200	Medium	600 - 200	Pink Red	very (sandy)	>85%		s - clear but not effervescence from											
			0.002		Stiff thimb; cnimbles in rolling thread;		Closely 200-60		Thinly 200-60		Vellow Orange Brown	see Note F See Note E		highly calcareous - strong				· · · · · · · · · · · · · · · · · · ·												
-	CLAY	not powd disintegra	ered betwe ste under w	Dry lumps can be broken but en the fingers. They also also but more slowly than sit	Very stiff	remoulds Can be indented by thumbnall; cannot be moulded;	Very closely	60-20	Very thinly bedded	60 - 20	Green Blue White Grey Black	Silly CLAY	Terms used to reflect secondary fine	from HCI	ined effervencence	CLAY	Proportions can be defined on a site of material specific													
		diatancy;	sticies to th	error planetry put no is fingers and dries slowly; on drying usually showing	Haid	Can be scratched by	Extremely closely	<20	Thickly laminated	20-6		Clayey SILT	constituents where this is important				basis of purely autjectively													
			_		(or extremely weak)	thumbnail	1. 1997		Thinly laminated	48		2010	_																	
	Condition			Accumulated in situ	Predominantly pi	ant remains, usually d	ark brown or black	in colour.		ains finely divided o	r discrete	Loose brox	tescriptions which grey very sand	GRAVEL WI	b occasional pockets	(<30mm) of	A percentage coars	e of fine soil assessed												
	Film	Fibres comp together	ressed	PEAT	distinctive smell.	ow bulk density. minated or discrete in		particles of organic matter		er, often with a idiale rapidly.	RIVER TE	er is angular to suban ERRACE DEPOSITS	guiar fine to or	same of fint. Sand is f	line	A. percentage coarse or fine soil assessed excluding cobbies and boakters B. Gravely or sandy and/or sity or clayey														
1	-	1		Fibrous peak	Plant remains res Water and no sol	ognisable and retains de on equesting	some atrength		Jerm	above Term	Colour	Medium dense tight browning sing gravely wightly dawy SAVID. Sand is fire to coarse. Grave is subsequent to subtrounded fire to coarse of eachdone (GLACHL DEPOSITS) SMT finand orange motified brown sightly sandy CLAY. Sand is fire to coarse.				ine soil depending on														
Organitic Books	Spongy	Very compre open structu	resible; re	Pseudo-fibrous peat Plant remains recognisable and s Turbid water and <50% solide on			cognisable and strength lost d <50% solids on squeezing			tly organic	grey	Fistures a occasional (LONDON	re generally subvertic grey gleying on sufficient of the sufficien	y subvertical, very closely spaced, smooth, planar with ng on surfaces. RMATION)			D. Gravely and/orks E. Or described as o													
	15.72	Can be mou	ided in	Amorphous peat	No recognisable Paste and >50%	plant remains, mushy solids on squeezing	consistency		orga	nic	dark grey	(ALLUVIUI	MI		h closely spaced thick		mass behaviour F. Gravely or sandy													
	Plastic.	hand; smears finge		Gyttja Humus	Decomposed plan Remains of plant	nt and animal remains a, organisms and excr	May contain ince etions with increase	ganic particles nic particles	very	organic	black	coarse brid	sk fragments, oliniker i wo dayey amorphou	n sandy GRAVEL of angular to subangular fine to and chalk with occasional broken tile fragments as PEAT																

The following table taken from BS 5930+A2:(2010) Table 14/15, is an aid to identification of rocks for engineering purposes and describes the terminology for rock discontinuity description.

	Rock Meeriel								Rock Mass													
none los			Rock Material					Rock Name		Ger	eria.			Discontinuities								
	Blrength	Structure and fabric	Colour	Testure	Gran	Size	BEDIMENTARY	IGNEOUS	METAMORPHIC	Ninor Constitutents	Formation Netter	Weathering	Orientation	Specing	Persistence	Terminetics	Roughman	Well Strength	Aperture	Infiling	Seronge	Noter
20 mm	>250MPa Extremally Strong Rings on harmen blows. Only	Use standard geological terms	LIGHTNESS Light / Dark	Use standard geological terms					Massive / Folleted	Describe using relative terms	Name according to published geological methors and methors	Approach 1 Mandatory description of all features associated with	Dip direction and dip eg 245/70	Extremely widely >6m	Very high <20m		Lerge scale (m) Waviness Curveture	Use standard sbergth terns (col 2)	Carrot be described in cores	Clean	Can be summerised in cores where	or Bed in detail in division into sets drip amounts is
	chipped with peological hammer	Very Thickly	Light / Links			Ĩ					11	weathering Describe state			High 10-20m		Straightness	Support by uning	Extremely wide >1000 mm	Surface staining (colour)	sets of different	office des afficients
	-	Thickly	1 - 1	For exemple.			CONCLOMERATE	GRANITE		14		and changes in:	Dip amount only it cores	Very widely 2 To 6mi	Medium 3 to 10m		Medum scale	Field strength tests	Very wide 100- 1000 mm	Soll infilling	5.0	Can
							BRECCIA		GNEISS	nere				Widely 0.8 to 2m	Low 1 to 3m		(cm) and small scale (mm)	Point load	Wide 10- 100mm	(describe as for soils)	Moisture on rock warface	
	100-250MPa	Medium		phanentto						occasional	COAL MEASURES		1.21		Very low <1m	acposure.	Stepped	Schmidt hammer	Moderately wide 2.5-10mm	Mineral coatings		
m	Very Strong Requires many hermen blows to break specimen	Thinly		ophilic	Contract		LIMESTONE			Request	1.00	Strength		Medium 200- 800mm		r within rock	Rough	Other Index tests	Open 0.5- 2.5mm	(eg. calcite, chiorite, gypsum etc.)	Dripping water	fauch se
	CIER PROVINI	Very Thinly	CHROMA. Pinkab	parphyritic.	Colored		AGOLOMERATE	DIORITE	MIGMATITE		WEATHERED WICKERSLEY ROCK	Fracture state		Closely 60- 200mm		d egenst discontinuity	Smooth	Visual atsetsment	Partly open 0.5- 2.5mm		Water fow measured per	ntation o
	50-100MPa Strong	Thickly isminated / Narrowly	Reddish Yellowish Brownsh	crystalline			AGGLOMERATE		-		2 - L	Colour		Very closely 20-60mm			Strated		Tight 0.1- 0.25mm		unit time on en individual discontinuity of	90
•	Rock broken by more than one harmer blow	Thinly lansingled / Vary marrowly	Greenish Buish Greyish	amorphous			DOLOMITE		MARBLE		REBIDUAL MUDSTONE	Presence of absence of weathering		Extremely closely <20mm			Undulating		Very tight ×0.1mm	Other - specify	set of discontinuities	CUDIOR I
m								CABBRO			1.5	products	1.11		Discontinuoua	Cannot	2999	-			Large >5i/sec	Record
	25-50 Mpa Medium Strong	100					VOLCANIC BRECCIA		4		SHERWOOD SANDSTONE			111	10	described in cores	Smooth ///		Take several readings	Record width, continuity and relevant	Medium 0.5- 5.0/sec	
1	Carnot be peeled with knile, fractures with single blow of	125	HUE			oatee	SANDSTONE HALITE	MICROGRANITE	SCHIST		10.1	Approaches 4 or 5		Take several readings	Continuous in cores		Strated		Report average and modimum	characteristics of infil	Small 0,05- 5,0Vsec	
territ	harmer		Pink Red		Da	ä				vugs	CHALK	Classify only if useful and unembiguous	Ρ.,	Report overage and maximum		Record size of exposure	Planar		100		1	
-	L.C.		Yellow		am Grait	Medium	QUARTZITE	OOLERITE.	PHYLLITE	pyrite	DISTINCTLY			-			Smooth					
	5-25MPa Weak Can be period	Terms include	Blue		Med					crystate	MERCIA						Strated					
Smm	with difficulty. Point of hammer makes shallow indents	bedded / laminated, foliated, banded and	Webs			Fine	TUFF ANHYDRITE	MICRODIORITE	QUARTZITE	organics							Measure amplitude and wavelength of		11.1			
		flow banded	Grey				SILTETONE	RHYOLITE	SLATE	colours		FRACTURE S	TATE				feieture					-
	1-5MPa Very Weak		Black		Contract of		CHALK	ANDESITE		odours		Solid Core	Solid core is t natural fracture		with at least one	ful dameter (but not necessar	ity a full circumfe	metrice) meaniumo	t along the core a	is or other scan	ine betwee
m	Crumbles under firm hartener blows. Cart be peeled by knife				-	2	GYPSUM	BABALT	HORNFELS			TCR					act) to the lotal h	ingth of the pare	i run.			
m	0.6 -1.0MPa	ł			2 4	2	FINE GRAINED TUFF MUDSTONE					SCR			e recovered to				10.00			
	Extremely Weak Gravel size	- C			Vory	6°	VERY FINE GRAINED TUFF					ROD		-						dage of total lengt	(_
	lumps crush between finger and thumb. Indented by				and set of side		CHERT FLINT	OBSIDIAN VOLCANIC GLASS				(F					nes over core ler		bly uniform chara	edwistics, not con	1275	

Appendix 4 - Exploratory Hole Records

Appendix 4.1

Appendix 4.1 - Key to Exploratory Hole Records & Soil and Rock Description Terminology

A4.1 Key to Exploratory Hole Records

The following table denotes the legend used for principal soil types when presented on geological logs:

Class	Туре	Legend	Grain size						
	Boulders	0 ~ 0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	>200mm						
Coarse Grained/Non-	Cobbles	0 ~ 0 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	63 – 200mm						
Cohesive	Gravel		Coarse 20 – 63mm Medium 6.3 – 20mm Fine 2 – 6.3mm						
	Sand		Coarse 0.63 – 2mm Medium 0.2 – 0.63mm Fine 0.063 – 0.2mm						
Fine Grained/	Silt	$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \end{array}$	0.002 – 0.063mm						
Cohesive	Clay	 	>30% of particles finer than 0.002mm						
Organic	Peat/Topsoil	یاند یاند یاند د یاند یاند ی							
	Made Ground		N/A						
Man Made Material	Concrete		IV/A						
	Blacktop								
Composite soils, such as clayey sands or silty gravels will combine the above legend codes									

The following table denotes the legends used for rock types when presented on geological logs:

Rock Type	Legend	Rock Type	Legend			
Mudstone		Conglomerate	00000			
Siltstone	× ×	Fine Grained Igneous				
Sandstone	· · · · · · · · · · · · · · · ·	Medium Grained Igneous	+ + + + - + + + + +			
Limestone		Coarse Grained Igneous	+ + + + · + + + + +			
Chalk		Fine Grained Metamorphic				
Coal		Medium/Coarse Grained Metamorphic				
Breccia						

The following table denotes the legends used for borehole backfill and commonly used installation types:

Backfill Type	Legend	Installation Type	Legend
Arisings		Plain Pipe	
Bentonite Pellet Seal		Slotted Pipe	
Sand Filter Medium		Porous Piezometer Tip	
Gravel Filter Medium	0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0	Vibrating Wire Piezometer	
Cement/bentonite grout			

A4.2 Soil and Rock Description Terminology

The following table gives the descriptive consistency term for cohesive soils as described on geological logs based on field observations:

Consistency term for field description	Field test	
Very soft	Finger easily pushed in up to 25 mm. Exudes between fingers	
Soft	Finger pushed in up to 10mm. Moulds by light finger pressure	
Firm	Thumb makes and impression easily. Cannot be moulded by fingers, rolls into a 3 mm thick thread without breaking or crumbling	
Stiff	Can be indented slightly by thumb. Crumbles in rolling to a 3 mm thick thread, but can then be remoulded into a lump	
Very stiff	Can be indented by thumb nail. Cannot be moulded but crumbles under pressure	
Hard	Can be scratched by thumbnail	

The term Hard Clay is for transported materials only such as glacial till.

When measurements of undrained shear strength of fine soils are made in the field using a hand vane or in the laboratory by triaxial test the following terms can be given on the logs using the terms described below:

Descriptive term based on measurement	Undrained shear strength classification definition (kPa)	
Extremely low	<10	
Very low	10 – 20	
Low	20 - 40	
Medium	40 – 75	
High	75 – 150	
Very high	150 – 300	
Extremely high	300 – 600	

The following table gives the descriptive term for strength of rock as it would be described on the geological log relative to field assessments and laboratory tests:

Term for use in field or based on measurement	Definition for field use	Definition on basis of Unconfined Compressive Strength measurements (MPa)
Extremely Weak	Can be indented by thumbnail. Gravel sized lumps crush between finger and thumb	0.6 – 1.0
Very Weak	Crumbles under firm blows with the point of a geological hammer. Can be peeled with a pocket knife	1 – 5
Weak	Can be peeled with a pocket knife with difficulty. Shallow indentations made by firm blows with the point of a geological hammer	5 – 25
Medium Strong	Cannot be scraped with a pocket knife. Can be fractured with a single firm blow of a geological hammer	25 – 50
Strong	Requires more than one blow of a geological hammer to fracture	50 – 100
Very Strong	Requires many blows of a geological hammer to fracture	100 – 250
Extremely Strong	Can only be chipped with a geological hammer	>250

The following table gives the descriptive terms for the structure of sedimentary soils and rocks:

Descriptive Term	Thickness	
Very thickly	>2 m	
Thickly	600 mm – 2 m	
Medium	200 mm – 600 mm	
Thinly	60 mm – 200 mm	
Very Thinly	20 mm – 60 mm	
Thickly laminated (sedimentary)	6 – 20 mm	
Thinly laminated (sedimentary)	< 6 mm	

The following table defines the standard indices used for the description of the fractures state in rock cores and is presented on geological logs:

Indices Term	Definition
TCR (%)	Total Core Recovery – Ratio of core recovered (solid and non-intact) to the length of the core run
SCR (%)	Solid Core Recovery – Ratio of solid core recovered to the length of the core run
RQD (%)	Rock Quality Designation – Ratio of solid core pieces longer than 100 mm to the length of the core run
FI	Fracture Index – The number of fractures per metre as calculated from a count of the number of fractures over an arbitrary length of core with similar fracturing intensity.
lf (mm)	Fracture Spacing, reported as minimum/mode/maximum spacing of fractures over an arbitrary length of core of similar intensity of fracturing.
NI	Where core is non-intact in the ground, the abbreviation NI may be used.
AZCL	Assessed zone of core loss
CRF	Core recovered from the following run. (length in m)

Appendix 4.2 - Cable Percussion / Rotary Core / Rota-Sonic Borehole Logs

			Contract		tonehav	/en FAS			Client:	Aber	deenshire Council	orehole ID	
Environm	CESTAIN nental Se	rvices	Contract	t Number: 5414		Date Started: 06/11	1/2013		Logged E	^{By:} CLP	Checked By: MJB	BH heet 1 of 1	-11
Combine	ed Rotary	Cored	Easting:	387457		Northing: 785	756.2		Ground L	evel: 4.23		icale: 1:2	25
-	ng Information	-		Sample	es & In Situ	u Testing					Strata Details		Groundwater Backfill & Installation
TCR SC		FI	Run		iple ID	Test Re	sult (m	_evel AOD)	Depth (m) (Thickness	Legend	Strata Description		Installation
ICR SC - -	-κ RQD		Kun		20 D1	Test Re		3.23	(1.00) 1.00		Strata Description MADE GROUND. Dark brown slightly clayey gravelly fine to medium sand with medium cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. 3 no. pairs of blue-green rubber gloves present within pit. Cobbles are subrounded of mixed lithologies. 1 no. sandstone boulder present (60x40x30mm). End of Borehole at 1.00 m		
	Progress & V		asing	Water	Borehole Depth (m)	Diameter	Casinı	-		Remarks: 1. Hand of	dug inspection pit to 1.00m depth.	- - - - - - - - - - 	
Date	Time Dept	h (m) De	pth (m)	Depth (m)	-e (vy					2. Boreho within depth.	ole terminated after a previous borehol the inspection pit. Previous hole found undertaken 1.00m to the west.	e was disco to be open	vered to 2.50m

				Contra	ct Name:	Stonehav	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
	C	STAIN		Contra	ct Number:		Date Started:			Logged E		Checked By:	BH [,]	1 A
Enviro	onmen	tal Sei	vices		5414		06/11	1/201	3	209900 2	CLP	MJB	Sheet 1 of 2	17 \
	bined R			Easting	^{ی:} 387458		Northing: 785	756.2		Ground L	-evel: 4.23	Plant Used: Sonic rig	Scale: 1:2	5
	Coring In		0		Sampl	es & In Situ	Testing					Strata Details		Groundwater
	-			Run				sult /	Level	Depth (m)	legend			Backfill & Installation
TCR	SCR	RQD	FI	Run	0.30- 0.50- 0.80- 1.20- 1.20 1.20- 2.00- 2.2 2.60 2.9 3.00- 3.20-4 3.30 3.30	0.50 B1 0.80 B2 1.20 B3 1.20 B3 1.65 D4 0 ES85 2.00 B5 2.00 B5 2.00 B5 0 ES7 0 ES8 ESES8 0 ES9 3.20 B10 4.00 B12 0 D11 ESD11	Test Re (S)N=21 (0,0,3,8,5,5) (S)N=8 (1,1,3,2,2,1) (S)N=26 (5,6,8,9,6,3) (S)N=0 (0,0,0,0,0,0)	5)	Level MAOD) 3.63 3.23 1.73 1.43 1.03	Depth (m) (Thickness (0.60) (0.40) 1.00 (1.50) 2.50 (0.30) 2.80 (0.40) 3.20 (1.40)	Legend Image: Constraint of the second se	Strata Description MADE GROUND. Dark brown slightly clayey gravelly fine to medium sand. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. from 0.30m depth, light orangish brown. MADE GROUND. Yellowish brown clayey gravelly fine to medium sand with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. MADE GROUND. Dark brown slightly clayey gravelly fine to medium sand with low cobble content. Gravel is subangular to subrounded of sandstone and mixed lithologies. MADE GROUND. Dark brown slightly clayey gravelly fine to medium sand with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz, mixed lithologies, rare concrete and ceramic pipe fragments. Cobbles are subangular of sandstone. from 2.00m depth, chemical/hydrocarbon odour noted. MADE GROUND. Black slightly clayey wood with slight oily sheen and hydrocarbon odour. MADE GROUND. Light yellowish brown clayey gravelly fine to coarse of sandstone, quartz not mixed lithologies. from 3.00m depth, dark brown mottled multicoloured in colour. MADE GROUND. Light yellowish brown clayey gravelly fine to coarse of sandstone, quartz and mixed lithologies. from 3.00m depth, dark brown mottled multicoloured in colour. Soft thinly laminated brown and grey organic SILT with very closely to closely spaced thin laminations of grey fine to medium sand and occasional fine to coarse gravel sized pockets of fibrous material.		
-					4.60-5	5.00 B15			-0.37	4.60	$\begin{array}{c} (16\times2\times2)\\ (16\times2\times2)\\$	Dark grey slightly clayey fine to medium SAND.	-	
												Continued next sheet		
Во	oring Prog					Borehole	Diameter	Casi	ng Diar	neter	Remarks:			
Date	Time	Boreh Depth		Casing apth (m)	Water Depth (m)	Depth (m) 2.00 7.50 10.00	Diameter (mm) 229 140 115	Depth (n 2.00 7.50		meter (mm) 220 140	 Sonic c Ground mins. Boreho Boreho 	lug inspection pit to 1.20m. No servic trilling from 1.20m to 10.00m depth. dwater encountered at 4.00m rising to le complete at 10.00m upon specifie le backfilled with bentonite upon con ammer id = GS RIG02. Hammer ene	o 3.45m after 2 d depth. npletion.	20
											Release S	tatus: Final		

	r P	STAIN		Contra	ct Name:	Stoneha	ven FAS			Client:	Aber	rdeensł	nire Council	Borehole ID	
	6	01KIII		Contra	ct Number:		Date Started:			Logged E			Checked By:	BH'	1A
Enviro	onmen	tal Se	rvices		5414		06/11	1/201	13		CLP		MJB	Sheet 2 of 2	
	pined R			Easting			Northing:	750		Ground I			Plant Used: Sonic rig	Scale:	
& Dyr	namic S	Sample	er Log		387458	.5	785	756.2	2		4.23		Someng	1:2	
	Coring In	ormation			Sampl	es & In Situ	u Testing					Stra	ata Details		Groundwate Backfill & Installation
TCR	SCR	RQD	FI	Run		ple ID 5.45 D16	Test Re	sult	Level m AOI	Depth (m) (Thickness) Legend		Strata Description		
-						5.60 B17 ESB17	(S)N=14 (0,1,1,2,3,8	3)	-0.87	5.10 (0.50)	shice shice shice a shice shice a shice shice shice a shice shice shice a shice shice a a shice shice a shice shice shice a shice shice a	fron occasi sized p peat. Dark b	ning Detail : 4.90m - 4.90m : n 4.90m depth, with onal fine to coarse gravel pockets of brown amorphous rown amorphous PEAT with onal fine to coarse gravel	 	
_									-1.37	5.60	shka shka shka ka shka shka s	sized p sand.	pockets of grey fine to medium	ו 1	
-					5.7	0 D18			-1.57	5.80		fine to suban	rown slightly clayey gravelly coarse SAND. Gravel is gular to subrounded fine to	-	
_					6.00-6	0 D19 6.50 U20 0 U20						mixed	e of sandstone, quartz and lithologies.		
-										(0.70)		sandy to subi	CLAY. Gravel is subangular rounded fine to coarse of tone, quartz and mixed	-	
-						0 D21 7.00 B23			-2.27	6.50		Soft re	ddish brown very sandy SILT.		
-										(0.50)				-	
-					7.00-7	7.50 B24			-2.77	7.00		slightly	ecoming stiff reddish brown / sandy slightly gravelly		
-												subrou	Gravel is subangular to unded fine to coarse of tone, quartz and mixed gies.	-	
-						7.95 D25 3.50 B26	(S)N=42 (4,9,10,10,	10,1						-	
-							2)							-	
-														- 8 -	
-										(2.50)				-	
-					8.50-9	9.00 B27								-	
-														-	
-						9.45 D28	(S)50/203n	-m						- - 9 -	
-					9.00-1	0.00 B29	(5,8,20,17,							-	
-									-5.27	9.50				-	
-									-9.27			SAND.	clayey gravelly fine to coarse . Gravel is subangular to unded fine to coarse of tone, quartz and mixed		
-										(0.50)		litholog	gies.	-	
Br	oring Proc	ress & W	/ater Oh	servatio	ns	Borehole	Diameter	Cas	sing Di	ameter	Remarks	End o	f Borehole at 10.00 m		
Date	Time	Boreh Depth	iole C	asing pth (m)	Water Depth (m)	Depth (m)	Diameter (mm)	Depth (iameter (mm)	1. Hand	dug inspe	ection pit to 1.20m. No ser om 1.20m to 10.00m dept		ed.
						2.00 7.50 10.00	229 140 115	2.0 7.5		220 140	 Groun mins. Boreho Boreho 	ndwater er ole comp ole backfi	lete at 10.00m upon speci llete at 10.00m upon speci lled with bentonite upon c d = GS RIG02. Hammer er	g to 3.45m after 2 fied depth. ompletion.	
											Release	Status:	Final		
											iteledse (ວເລເບຣ.	1 11101		

COCTAIN		Contract Nam Stonehav					Client: Aberdeens	shire Council	Borehole	
COSTAIN		Contract Num		Date S			Logged By:	Checked By:	- (CDR1
Environmental S	ervices	5 Easting:	414	Northin	23/10/2	013	MC Ground Level:	MJB Plant Used:	Sheet 1 of Scale:	2
Cable Percuss Borehole Lo		38742	24.5			2	2.94	Cut down CP	Could.	1:25
	-									One we done to a
Samples & Ir Sample ID		ting est Result	Level	Depth (m (thicknes) Legend		Strata Details Strata Descri	ption		Groundwater Water Backfill/
0.00 D1			(m AOD)		s) XXXXXX	MADE G	ROUND. Grey slightly san	•		Strike(s) Installatio
- - 0.20 D2			2.84	0.10		coarse g	ravel of granite.	, ,		
0.20-0.50 B3							ROUND. Brown fine to me 0m depth, black geotextile.		-	
-				(0.60)					-	
-			2.24	0.70		MADE G	ROUND. Brown angular co	obbles and boulders of		
						sandsto	ne with fine to coarse sand	infill.		
_				(0.50)					-1	
-									-	
1.20-1.65 D4 1.20-2.00 B5	(S)N=50 (11,8,11,		1.74	1.20			nse brown fine to coarse SA	AND and very angular to		
-	, . ,	/				lithologie			-	
t				(0.80)						
-				(0.80)						
									-	
- - 2.00-2.45 D6	(0)11.0 (0.94	2.00					2	
2.00 ESD6 2.00-3.00 B7	(S)N=2 (=2 (3,2,1,0,1,0)		Very l with lo		Very loose brown slightly gravelly fine to coarse SAND with low cobble content. Gravel is angular to rounded fine			-	
2.00 0.00 Di							e of sandstone and mixed I of sandstone.	ithologies. Cobbles are	-	
					a					
-									_	
				(1.30)						
					4 9 9				-	
-										-
- 3.00-3.45 D8 3.00 ESB9	(S)N=12 (1,1,4,4,1					at 3.0	0m depth, medium-dense.		-3	
3.00-4.00 B9 -									-	
			-0.36 -0.46	3.30 3.40		Grey fine	e to medium SAND.			
			-0.40	5.40	ગોદ ગોદ ગોદ શોધ દ ગોદ ગોદ ગોદ ગોદ ગોદ ગોદ	Dark bro	wn amorphous PEAT.		-	
-					د مالد مالد . مالد مالد مالد ، مالد مالد م				-	
I.				(0.75)	مالاه مالاه مالاه د مثالاه مثالاه م					
-					ઝોરિંદ ઝોરિંદ ઝોરિંદ ૨ ઝોરિંદ ઝોરિંદ ઝોરિંદ ઝોરિંદ ઝોરિંદ				-	
- 4.00-4.45 UF 4.00-5.00 B10	*4(0/0mm			د مثالات مثالات : مثالات مثالات مثالات د مثالات مثالات :				-4	
			-1.21	4.15	siles siles siles		wn sandy very angular to w			
ł						coarse (SRAVEL of mixed lithologie	es.	-	
				(0.85)					-	
ľ									-	
						Continue	ed next sheet			
Boring Progress &			epth/Casi	ng Diame		marks:				
Dep	Depth (m) Casing (m) Depth (r					· · /	Hand dug inspection pit to Difficult excavation 1hr.	1.20m depth. No services e	ncountered	d
		6.00 6.00 4	.85	6.00		 Difficult excavation 1hr. 2. Cut down rig assembled on position. Cable percussion drilling with cut down rig between 1.20m and 8.30m depth. 			th cut	
					ole Diam	eter 3.	Groundwater encountered encountered at 8.00m dept	at 1.30m depth, no rise. Gro th, rising to 4.85m after 20 r	nins.	
				epth (m)	Boreh Diamete 150	r (mm) 4.	Borehole complete at 8.10r unable to advance past 6.0	m depth on engineer's instru 10m.		asing
				8.00 150			150 Unable to advance past 0.00m. 5. Borehole backfilled with bentonite upon completion. Release Status: Final			
	ļ	Ļ	ļ		ļ	Ļ				

состани		Contract Stone	_{Name:} haven FA	AS				Client:	rdeensh	ire Council	Borehole	
COSTAIN		Contract	Number:		Date St			Logged By:		Checked By:	_ (CDR1
Environmental S	ervices		5414			23/10/2	013	MC		MJB	Sheet 2 o	f 2
Cable Percuss Borehole Lo		Easting:	7424.5		Northin	^{g:} 35750.2	2	Ground Level: 2.94		Plant Used: Cut down CP	Scale:	1:25
Samples & Ir	n Situ Test	ina						Strata Details				Groundwater
Sample ID		st Result	(n	Level n AOD)	Depth (m (thickness	Legend			a Descript	ion		Water Backfil Strike(s) Installat
5.00-5.50 B11	(S)N=14 (3,2,2,3,4	,5)	-	2.06	5.00		Very so very ang lithologi	ft reddish brown sa jular to well rounde es.	andy gravel ad fine to c	ly CLAY. Gravel is parse of mixed		
- 6.00 D12 6.00-6.50 B13	(S)N=27		-	3.06	6.00	K K	cobble of fine to c	ff red slightly gravel content. Gravel is v oarse of mixed litho ded to well rounde es.	ery angula ologies. Co	r to well rounded	6 - - - - -	
6.50-7.00 B15	(S)N=27 (3,4,5,7,7	;,8)			(2.00)						- - 7 - - -	
7.50 D16 7.50-8.00 B17		1/150mm -5.0									-	\bigtriangledown
- 8.00-8.30 D18 8.00-8.30 B19	(S)50/150 (17,8,20,3)mm 30)	-5.0		8.00 (0.30) 8.30		coarse angular lithologi	nse red slightly clay SAND with low cob to well rounded fin- es. Cobbles are an	ble conten	t. Gravel is very	- 8	
							End of F	es. 3orehole at 8.30 m			-9	
- - - -												
ŀ											F	
							1					
						ng Diame						
24/10/2013 1800	Depth (m) Casing (m) Depth (m) Depth (m) 4/10/2013 1800 6.50 6.00 - 6.0				Depth (m) Casing	meter (mm) 6. SPT nammer id = WBT. Energy ratio = 74%						
	25/10/2013 1100 8.30 6.00 4.85 Depth/Borehole Diameter											
					epth (m) 8.00	Diameter	r (mm)					
					0.00	150		lease Statue: Fin	nal			
							Release Status: Final					

	00075			act Name: nehaven	FAS				Client: Aberdeens	nire Council	Borehole	ID:
	COSTA	IIN	Contr	act Number		Date St			Logged By:	Checked By:	-	BH2
Environ	menta	I Servi		541	4	Northin	26/10/2	013	MC	MJB Plant Used:	Sheet 1 o Scale:	f 2
	le Percorenole	cussion Log	Eastir	387409	.0		85737.4	4	Ground Level: 3.43 C	ut down CP rig / M		1:25
-		& In Situ	9			1	I	Ś	Strata Details			Groundwater
Sam	ple ID		Test Resu	ult	Level (m AOD)	Depth (m (thickness	n) Legend s)		Strata Descrip	tion	ł	Water Backfill/ Strike(s) Installatio
	20 D1 -0.50 B2				3.35 3.28	0.08 0.15 (0.35)		MADE G Gravel is MADE G	ROUND. Concrete. ROUND. Light grey fine to (angular fine to coarse of m ROUND. Dark brown slight and. Gravel is subangular to	ixed lithologies.		
	50 D3 -0.65 B4				2.93	0.50 (0.30)		Coarse of MADE Of gravelly	For the second s	s. vn slightly clayey slightly is angular to well		
0.80	80 D5 0 ESB6 -1.00 B6				2.63	0.80		at 0.6 Medium with me rounded	5m depth, with subangular -dense brownish red gravell dium cobble content. Gravel fine to coarse of mixed litho	cobbles. y fine to coarse SAND is angular to well logies. Cobbles are	 	
1.20	-1.65 D7) ESES9 2.00 ES9	(3)	N=27 4,4,12,6,5)					angular	to well rounded of mixed lith	olõgies.		
- 1.5 - - -	50 W8					(1.60)						
2.00-2 - - -	2.45 D10) (S)	N=5 (3,2,2,7	1,1,1)	1.00	0.40					2 - -	
-					1.03	2.40		Soft darl	t dark brown slightly sandy SILT. Sand is fine.			
	3.45 D11 4.00 B12		(S)N=37 0.43			3.00			rown slightly silty sandy ang		3	
		. (14	(S)N=37 0.43 (14,11,10,10,10,7)					fine to c	oarse GŘAVEL of sandston	e and mixed lithologies.	-	
-	4 45 D42					(1.20)					-	
	4.45 D13 5.00 B14		N=9 (5,4,3,2	2,2,2)	-0.77	4.20			-dense brownish red very sil silt partings/beds througho		-4	
- - -											-	
-							$\begin{array}{c} & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{array}$				F	
								Continue	ed next sheet			
Boring	Boring Progress & Water Observations						ng Diame	eter Re	marks:			
Date 26/10/2013	Date Time Borehole Depth (m) Depth of Casing (m) Water Depth (m) Depth (m) 26/10/2013 1800 1.20 - - - -						Casin Diameter 150	r (mm) 1. 2.	(mm) 1. Hand dug inspection pit to 1.20m depth. No services encountered. 2. Cut down rig assembled on position.			
28/10/2013	28/10/2013 1800 6.80 4.70 -						 Breaking out concrete surface and pit - 3 hours. Cable percussion drilling with cut down rig between 1.20m an depth. 			20m and 6	.80m	
						Depth (m) Borehole 5. Rotary follow-on attempted at 6.80m depth.				43m after 5	5	
						6.80 150 Diameter (mm) 6.80 150 7. SPT hammer id = WB1. Hammer energy ratio =74%						
						Release Status: Final						

COCTAIN			ct Name: ehaven f	AS				Client: Aberdeens	shire Council	Borehole		
COSTAIN		Contrac	ct Number:		Date St			Logged By:	Checked By:	- (CDR3	
Environmental S	Services		5414	1		31/10/2	013	MC	30MJB	Sheet 1 of	2	
Cable Percus		Easting	ی 87337.4	1	Northin 7	^{g:} 85754.9		Ground Level: 3.36	Plant Used: Cut down CP	Scale:	1:25	
Borehole Lo	og	50	57557.4	+	70	55754.8	9	5.50			1.25	
Samples &		<u> </u>					:	Strata Details			Groundwater	
Sample ID	Te	est Result		Level (m AOD)	Depth (m (thickness) Legend)		Strata Descri	ption		Water Backfill/ Strike(s) Installation	
0.10 D1 0.10-0.50 B2					(1.00)		gravelly angular sandsto from rounded	ROUND. Grass over brow fine to coarse predominant to rounded fine to coarse o ne, brick and mixed litholog 0.50m depth, gravelly with cobbles of sandstone.	ly fine sánd. Gravel is f slate, quartzite, ies. subangular to well	-		
- 1.00 D3 - 1.00-1.20 B4 - 1.20-1.65 D5 - 1.20 ESD5	(S)N=6 (3,3,4,1,	1,0)	2.36	1.00		at 0.9 brown g Brown s	0m depth, 2cm dia. tree ro 0m depth, broken ceramic lazed teapot handle. andy angular to well rounde tone and mixed lithologies	floor tile and dark	1		
1.20-2.00 B6				1.86	1.50	ગીલ ગીલ ગોલ દ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ ગોલ દ ગોલ ગોલ ગોલ	Plastic of blue fine	lark brown amorphous PEA sand.	T with bands of greyish	-		
2.00 D7 2.00 ESD8 2.00 EWW9 2.00-2.45 D8 2.00 W9 2.00-2.50 B10	(S)N=9 (1,2,2,3,	2,2)		(1.70)	العالية عالية معالية عالية معالية معالية العالية عالية معالية العالية عالية معالية معالية عالية معالية معالية معالية معالية عالية معالية معالي				- 2		
- - 3.00-3.45 D11 - 3.00 ESB12 - 3.00-3.50 B12 -	(S)N=33 (6,10,12,			0.16	3.20	alle alle alle a alle alle alle alle alle alle alle alle alle alle alle alle alle alle alle alle		eddish brown very gravelly s angular to rounded fine to		-3		
					(0.80)		intrologi			-		
- 4.00-4.45 D13 - 4.00-4.50 B14 - - - - -	4.00-4.45 D13 4.00-4.50 B14 (S)N=11 (2,2,2,2,3,4) -0.64 4.00						Firm bro angular lithologi	wnish red slightly gravelly to well rounded fine to coar es.	sandy SILT. Gravel is rse of mixed	4 		
ŀ						× × × × × × × × × × × × × × ×	Continu	ad payt shast		-		
						r x x x x	Continu	ed next sheet				
Boring Progress &	& Water Ob	oservat	ions	De	epth/Casi	ng Diame		marks:				
		epth of sing (m)	Water Depth (m	,	epth (m)	Casing Diameter (mm) 1		neter (mm) 1. Hand dug inspection pit to 1.20m depth. Cable encountered in side of pit				
31/10/2013 1800 5.00 4.00 - 4.50 01/11/2013 0800 5.00 4.00 4.58 2.20 Depth/Borehole Dia						150	2.	at 0.80m depth, pit extended 0.5m to north. 2. Cut down rig assembled on position. Cable percussion drilling with cut			th cut	
						ole Diame	eter 3.	down rig between 1.20m a Groundwater encountered	at 1.25m depth, rising to 1.2	10m after 5	mins.	
				De	epth (m)	Borehole Groundwater encountered at 6.50m depth, rising to 3.50m after 20 mins. Diameter (mm) 4. Borehole complete at 6.80m depth on engineer's instruction as casing						
					6.50	150	5.	unable to advance past 4.5 Borehole backfilled with be	0m.		-	
								Release Status: Final				

			Contra Stor	act Name: nehaven	FAS				Client:	shire Council	Borehole	D:
	COSTAI	N		act Number		Date St	arted:		Logged By:	Checked By:	- (CDR3
Enviror	nmental	Service		541			31/10/2	013	MC	30MJB	Sheet 2 of	
	ole Percu		Eastin	g:		Northin	-		Ground Level:	Plant Used:	Scale:	
	orehole		3	87337	.4	78	35754.9	9	3.36	Cut down CP		1:25
	Samples &	& In Situ T	esting						Strata Details			Groundwater
Sar	nple ID		Test Resu	lt	Level (m AOD)	Depth (m (thickness) Legend		Strata Descri	ption		Water Backfill/ Strike(s) Installatio
	-5.45 D15 0 ESD15	(S)N=	:21				x x x x x x x x x x	Firm b	rownish red slightly gravelly r to well rounded fine to coar	sandy SILT. Gravel is		
	-5.50 B16	(4,5,6	,6,4,5)			(0.50)	X X X X X (X X X X X X X X X	litholoc	ies.		_	
-						(2.50)		rounde	5.00m depth, very stiff and d sandstone.	IOW CODDIE CONTENT OF	-	
-							(
-							× × × × × < × × × ×				-	
-							(* * * * * * * * * *				-	
-							<pre></pre>				_	
- 6.	00 D17						X X X X X (-6	
_ 6.00	-6.50 B18						x x x x x x x x x				-	
-							x x x x x <					
~							X X X X X X X X X X X X X X X				-	
- 6.50 6.5	-6.80 D19 0 ESD19	(S)50	/170mm 22,20,8)		-3.14	6.50	CXXXX	Very de	ense brownish red very grave	elly fine to coarse SAND.		
-		(0,22,	22,20,0)			(0.30)		litholog	is angular to rounded fine to ies.	medium of mixed		
- 6.	80 W20				-3.44	6.80		End of	Borehole at 6.80 m			
											-7	
-											-	
-											-	
m.												
-											-	
-												
-											-	
m.											-	
-											-8	
-											-	
-											-	
-											_	
-											-	
											_	
а. м.												
-											-9	
-											_	
-											_	
-											-	
-											_	
-											-	
-											-	
[
Borin	g Progress	s & Water	Observa	tions	De	epth/Casi	ng Diame	eter R	emarks:			
Date		Borehole	Depth of Casing (m)	Water	m) Di	epth (m)	Casin Diameter		SPT hammer id = WB1. E	nergy ratio =74%		
31/10/2013 01/11/2013	1800 0800	5.00 5.00	4.00 4.00	- 4.58		4.50	150					
01/11/2013	1030	6.80	4.50	2.20		th/Boreh	ble Diam	eter				
					D	epth (m)	Boreh Diameter	nole r (mm)				
						6.50		150				
								R	elease Status: Final			

00077111	Co	ontract Name: Stonehaven	FAS				Client: Aberdeei	nshire Council	Borehole I	
COSTAIN	Co	ontract Numbe	r:	Date S	tarted:		Logged By:	Checked By:	- 0	DR4
Environmental Serv	vices	542	4		29/10/2	013	MC	MJB	Sheet 2 of	2
Cable Percussion	ו Ea	asting: 387387	1	Northin	^{ig:} 85737.7	7	Ground Level: 3.31	Plant Used: Cut down CP	Scale:	1:25
Borehole Log			. 1	10	00707.7					
Samples & In Sit	tu Testing Test R		Level	Depth (m	Legend	Ś	Strata Details	vintion		Groundwater Water Backfill/
5.00-5.27 U18	*55/270		(m AOD)	Depth (m (thicknes	s) ***:****	Otiff h and	Strata Desc	-		Strike(s) Installatio
5.00 U18 5.00 D18	33/27					coarse c rounded	vnish red slightly gravelly ontent. Gravel is very any of mixed lithologies. Cobb of mixed lithologies. 5.30m depth, very stiff.	/ sandy SILT with low gular to rounded fine to les are subangular to		
- - - 6.00 D20 - 6.00-6.50 B21				(4.15)					- - 6	
- - 6.50-6.95 D22 (S - 6.50-7.00 B23 (6,	i)N=49 ,6,8,13,13	,15)								
- - 7.10 D24 - -									- - - -	
	6)50/200mi 0,15,18,18		-4.54	7.85		End of B	orehole at 7.85 m		- - 	
- - - -										
									9 - - -	
									-	
									F	
Boring Progress & Wa	ater Obse	rvations	De	epth/Casi	ng Diame		marks:			
Date Time Borehole Depth (m	e Depth n) Casing	of Water (m) Depth (m) De	epth (m)	Casin Diameter 150	g r (mm) 7.	SPT hammer id = WB1.	Energy ratio =74%		
				4.50						
					ole Diame					
				epth (m) 7.50	Boreh Diameter 150	r (mm)				
						Re	ease Status: Final			

	Contract Name: Stonehaven FAS			Client: Aberdeer	nshire Council	Borehole I	D:
COSTAIN	Contract Number:	Date Sta	arted:	Logged By:	Checked By:	- 0	DR4
Environmental Services	5414	2	9/10/2013	MC	MJB	Sheet 1 of	2
Cable Percussion	Easting:	Northing		Ground Level:	Plant Used:	Scale:	
Borehole Log	387387.1	78	5737.7	3.31	Cut down CP		1:25
Samples & In Situ Testi	•			Strata Details			Groundwater
Sample ID Tes	t Result Leve (m AC	Depth (m) D) (thickness)	Legend	Strata Desc	cription		Water Backfill/ Strike(s) Installatio
- 0.10 D1 0.10-0.60 B2		(0.60)	SSSS fine sand	ROUND. Grass over dar d with some rootlets. Gra of ceramic and mixed lit	k brown slightly gravelly silty vel is angular to well hologies. (Topsoil).		
- 0.60 D3 0.60 ESB4 0.60 ESD3	2.71	0.60	XXXX with med	dium cobble content. Gra	n slightly silty gravelly sand livel is very angular to well		
- 0.60-0.80 B4				fine to coarse of mixed li to rounded of concrete an		-	
0.90 D5 0.90-1.10 B6	2.41	0.90	Gravel is	angular to well rounded es. Cobbles are angular t	AVEL with high cobble conten fine to coarse of mixed o rounded of mixed	t1	
1.20 ESD7 (5,5,4,6,3 1.20-2.00 B8	,4)	(0.90)				-	
- 1.90 D9	1.51	l 1.80	alle alle alle alle alle alle alle alle a alle alle	k brown pseudo-fibrous l	PEAT.		
- 2.00-2.45 U10 *18/3 2.00 U10 2.00-3.00 B12	330mm	(0.50)	عالد عالد م عالد ع عالد عالد م عالد عالد - عالد عالد عالد		-2 - -		
- - 2.50 D11	1.01		Soft blui remains	sh grey sandy CLAY with	some fibrous plant		
-		(0.50)	1999 - 1999 - 1999 2019 - 1999 - 1999 2019 - 1999 - 1999 2019 - 1999 - 1999 2019 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		-		
- 3.00 D13 (S)N=4 (4 - 3.00-3.50 B14 -	,4,2,1,1,0)	(0.90)	i a ta i li na i a i a i	rown slighty sandy angula GRAVEL of mixed litholog		3	
. 3.70-4.00 B15	-0.3	9 3.70	Stiff brov	wnish red slightly gravelly	sandy SILT with low	-	
- - 4.00-4.45 D16 (S)N=16 - 4.00-5.00 B17 (3,3,3,3,3 -	,7)		°≪ k k k coarse c	ontent. Gravel is very and f mixed lithologies. Cobb of mixed lithologies.		4	
			Continue	ed next sheet			
Boring Progress & Water Ob		Depth/Casin	-	marks:			
Date Time Borehole Dep Depth (m) Case	oth of Water ing (m) Depth (m)	Depth (m) 4.50	150 2.	Cut down rig assembled down rig between 1.20m	to 1.20m depth. No services e on position. Cable percussior and 7.85m depth.	n drilling wi	th cut
		Depth/Boreho	le Diameter	mins.	d at 1.20m depth, rising to 1.	10m depth	atter 20
		Depth (m) 7.50	Diameter (mm) 150 6.	er (mm) 5. Borenole complete at 7.85m depth on engineer's instruction due to			0

				Contra	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
		STAIN		Contra	ct Number:		Date Started:			Logged I	By:	Checked By:	B⊦	13
Enviro	nmen	tal Sa	rvices		5414		01/1	1/20 ⁻	13		CLP	MJB	Sheet 1 of 2	
		Rotary (Easting	g:		Northing:			Ground	Level:	Plant Used:	Scale:	
		Sample			387314	.9	785	746.	4		4.48	Sonic rig	1:2	25
	Coring In	formation			Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Leve (m AO	Depth (m D) (Thickness) Legend	Strata Description		Installation
-					0.30-	20 D1 0.50 B2 1.20 B3			4.28 3.88	(0.40)		MADE GROUND. Grass over dark brown slightly gravelly very clayey fine to medium sand with frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz, brick and mixed lithologies. (Topsoil). MADE GROUND. Dark brown mottled light yellowish brown gravelly very clayey fine to medium sand. Gravel is subangular to subrounded fine to coarse of quartz, sandstone, brick	- - - - - - - -	
-					1.20-	1.65 D4 2.00 B5	(S)N=30 (5,5,7,7,7,5	9)				and mixed lithologies. from 0.40m depth, with low cobble content of subangular to subrounded sandstone and mixed lithologies. Medium-dense light yellowish brown and multicoloured slightly clayey very gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and	1 - - - - -	
-					2.00 2.00- 2.0 2.0	2.45 D6 EWW8 2.60 B7 00 W8 0 W31	(S)N=17 (4,3,3,4,6,4	4)		(2.00)		mixed lithologies.	2-	
-					2.7 2.70	3.80 B10 70 D9) ESD9 3.45 D11	(S)N=14 (0,0,1,1,4,8	3)	1.88	2.60	Alte Alte <td< td=""><td>Firm locally plastic dark brown slightly clayey amorphous PEAT with closely spaced thin laminations of grey fine to medium sand.</td><td>- - - - 3 - -</td><td></td></td<>	Firm locally plastic dark brown slightly clayey amorphous PEAT with closely spaced thin laminations of grey fine to medium sand.	- - - - 3 - -	
-					3.9	0 D12			0.68	3.80	a shla shla shla shla	Medium-dense reddish brown slightly gravelly very clayey fine to	- - - - - - - -	
-					4.00-4	4.70 B13	(S)N=12 (1,3,2,2,5,3	3)		(0.90)		medium SAND. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	4 - - - - -	
-					4.80-	0 D14 5.00 B15			-0.22	2 4.70		Firm reddish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to Continued next sheet		
		gress & W Boreh	iole C	asing	Water	Borehole Depth (m)	Diameter	Cas Depth		ameter Diameter (mm)	Remarks:	dug inspection pit to 1.20m. No servi		ed
Date	Time	Depth	(m) De	pth (m)	Depth (m)	6.00 10.00	140 115	6.0		140	 Sonic of 3. Ground mins. Boreho 5. Boreho 	aug inspection pit to 1.20m. No servi drilling from 1.20m to 10.00m depth. dwater encountered at 2.45m rising f ole complete at 10.00m upon specific ole backfilled with bentonite upon cor ammer id = GS RIG02. Hammer ene	to 1.97m after : ed depth. mpletion.	20
											Release S	Status: Final		

				Contrac	ct Name:	Stonehav	ven FAS			Client:	Aber	deenshire Council	Borehole ID
	C	STAIN	-	Contrac	t Number:		Date Started:			Logged E		Checked By:	BH3
Enviro	onmen	tal Serv	∕ices	Contrac	5414		01/11	/201	3	Logged I	CLP	MJB	Sheet 2 of 2
		otary Co Sampler		Easting	: 387314		Northing: 7857	746.4		Ground L	-evel: 4.48	Plant Used: Sonic rig	Scale: 1:25
	Coring Inf	ormation	-		Sampl	es & In Situ	u Testing					Strata Details	Groundwar Backfill &
TCR	SCR	RQD	FI	Run	· ·	nple ID	Test Res	sult /	Level m AOD)	Depth (m (Thickness	Legend	Strata Description	Installatio
					5.00-5	5.50 U16				(0.90)		coarse of sandstone, quartz and mixed lithologies.	
-													-
-					5.6	0 D17 0 D18 5.90 B19			-1.12 -1.22	5.60 5.70		Reddish brown and multicoloured slightly clayey fine to coarse SAND.	
-						0 D20 6.45 D21	(S)N=46		-1.42 -1.52	5.90 6.00		Firm reddish brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed	6
-						6.90 B22	(4,9,10,11,1 3)					lithologies. Reddish brown and multicoloured slightly clayey gravelly fine to coarse SAND. Gravel is subangular to	
-										(0.90)		subrounded fine to coarse of sandstone, quartz and mixed lithologies. Firm becoming stiff reddish brown	
_					6 90-7	7.50 B23			-2.42	6.90		slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	-
-					0.90-1				2.72	(0.60)		Stiff dark greyish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	7-
-					7.50-7	7.95 D24	(S)50/225m		-3.02	7.50			-
-						8.25 B25	(2,8,16,16,1					Stiff reddish brown occasionally mottled yellowish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	-
-													8-
-					8.25-8	8.80 B26							-
-					8.80-9	9.50 B28				(2.25)		from 8.80m depth, mottled	-
-					9.00-9	9.45 D27	(S)50/145m (13,12,28,22					multicoloured and very sandy.	9-
-													
-						9.75 B29 0.00 B30			-5.27	9.75			
-									0.21	(0.25)		Firm dark brown gravelly very sandy CLAY. Gravel is subangular to Continued next sheet	-
	<u> </u>	ress & Wa Borehole		servatio	NS Water		Diameter		ing Diai		Remarks:		
Date	Time	Depth (n	n) Dep	asıng oth (m)	Water Depth (m)	Depth (m) 6.00 10.00	Diameter (mm) 140 115	Depth (n		imeter (mm)	 Sonic of Ground mins. Boreho 5. Boreho 	dug inspection pit to 1.20m. No servi drilling from 1.20m to 10.00m depth. dwater encountered at 2.45m rising ble complete at 10.00m upon specifi ble backfilled with bentonite upon co ammer id = GS RIG02. Hammer end	to 1.97m after 20 ed depth. mpletion.
											Release S	Status: Final	

CIIST	id IN	Contrac		Stonehav	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
Environmenta			t Number: 5414		Date Started: 01/11	1/2013	3	Logged B	CLP	Checked By: MJB	BH Sheet 2+ of 2	-13
Combined Ro & Dynamic Sa		Easting:	: 387314		Northing: 785	746.4		Ground L	evel: 4.48	Plant Used: Sonic rig	Scale: 1:2	25
Coring Infor			Sample	es & In Situ	u Testing					Strata Details		Groundwater Backfill & Installation
	RQD FI	Run	-	ple ID	Test Re	sult (m	Level 1 AOD)	Depth (m) (Thickness)	Legend	Strata Description		Installation
ICK SCR I - - - <tr td=""> - -<</tr>		Kun	Sam	ipie ID	Test Re		5.52	10.00	Legend	subrounded fine to coarse of sandstone, quartz and mixed lithologies. ;;; 9.90m - 9.90m : from 9.90m depth, slightly sandy, very gravelly		
	Borehole	Casing epth (m)	Water	Borehole Depth (m)	Diameter Diameter (mm)	Casin Depth (m)	ng Diar) Dia	meter (mm)	Remarks: 1. Hand of	dug inspection pit to 1.20m. No ser	vices encounter	ed.
Date Time	Depth (m) D	epth (m)	Depth (m)	6.00 10.00	140 115	6.00		140	 Sonic (3. Ground mins. Boreho Boreho SPT hat 	dilling from 1.20m to 10.00m depti dwater encountered at 2.45m rising ble complete at 10.00m upon speci ble backfilled with bentonite upon c ammer id = GS RIG02. Hammer er	n. to 1.97m after fied depth. completion.	20

		STAIN		Contrac		Stonehav	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
Enviro	onmen:		vices	Contrac	t Number: 5414		Date Started: 22/10)/201	3	Logged E	^{By:} CLP	Checked By: MJB	B Sheet 1 of 2	H4
Comb	pined R namic S	otary C	ored	Easting	387300		Northing: 7857	769.6	6	Ground L	evel: 4.33	Plant Used: Sonic rig	Scale:	:25
(Coring Inf	ormation			Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Re	sult (Level m AOD	Depth (m) (Thickness	Legend	Strata Description		Installation
					0.80- 1.20- 1.20- 1.20-	30 D1 1.20 B2 1.65 D3 1.90 B4 3.00 B6	(S)N=50 (8,9,12,15, ⁻ 0)	13,1	4.18 3.13 2.43	0.15 (1.05) 1.20 (0.70) 1.90		MADE GROUND. Asphalt. MADE GROUND. Brownish red ve gravelly fine to medium sand with medium cobble content. Gravel is angular to subrounded, fine to coarse of mixed lithologies and tarmacadam. Cobbles are subangular to subrounded of mixel lithologies. MADE GROUND. Dark orangish brown mottled multicolours slightly clayey gravelly fine to coarse sam with low cobble content. Gravel is subangular to subrounded fine to coarse of quartz, sandstone, coal and mixed lithologies. Cobbles are subangular to rounded of sandstone, quartz and mixed lithologies. Medium-dense light yellowish	d 1 ,	
					2.00	2.45 D5) ESD5 3.45 D7	(S)N=16 (16,7,4,5,4,	3)	1.33	(1.10)		brown mottled light grey clayey fin to medium SAND.	e 2	-
					3.00 3.00- 3.20-	4.45 D10	(S)N=6 (11,6,2,1,1, (S)N=7 (2,1,2,2,1,2)		1.13	3.20		Plastic dark brown and dark grey slightly sandy silty amorphous PEAT. Loose dark brown mottled grey slightly clayey gravelly fine to coal SAND with low cobble content. Gravel is subangular to rounded fi to coarse of sandstone, quartz an mixed lithologies. Cobbles are subrounded of mixed lithologies.	ne	
- - - - - - Bc Date	Dring Prog	ress & W Borehc Depth (le C	Servation asing pth (m)	NS Water Depth (m)	Borehole Depth (m) 6.00 10.00	Diameter Diameter (mm) 140 115	Casi Depth (r 6.00	m) D		 Sonic c Ground mins. From 3 Boreho 	Continued next sheet dug inspection pit to 1.20m. No su drilling from 1.20m to 10.00m deg dwater encountered at 4.00m risi 3.00m depth, limited recovery due ble backfilled with bentonite upon	oth. ng to 1.00m afte to water ingres completion.	r 20 s.
												ammer id = GS RIG02. Hammer		%

	P	STAIN		Contrac		tonehav	ven FAS		Client:	Aber	deenshire Council	Borehole ID
	6	81K.III		Contrac	t Number:		Date Started:		Logged	By:	Checked By:	BH4
Enviro	onmen	tal Ser	vices		5414		22/10/	2013		CLP	MJB	Sheet 2 of 2
		otary C		Easting	387300		Northing: 7857	69.6	Ground	Level: 4.33	Plant Used: Sonic rig	Scale: 1:25
		Sample	r Log							1.00		Groundwate
TCR	Coring Inf		FI	Dum	· ·	es & In Situ	<u> </u>	.u. Lev	el Depth (m	0	Strata Details	Backfill & Installation
ICR	SCR	RQD	FI	Run		ple ID	Test Resu	ult (m Ad	el Depth (m DD) (Thickness	Legend	Strata Description	
					5.00-5 5.10-5 5.50-5 5.90 6.00-6 6.00-6 6.00-6 6.40-6 6.88 6.80-7 7.50-7 7.50-8	.45 D11 .10 D12 .40 B13 0 D14 .90 B15 0 D16 .45 D17 .40 B18 0 D20 .50 B21 .50 B21 .95 D22 .30 B23 0 D24 .70 B25	(S)N=32 (11,10,7,8,8, (S)N=23 (2,4,5,7,5,6) (S)50/143mr (6,19,22,28)	9) -0.7 -1.0 -2.0 -2.0	77 5.10 (0.30) 5.40 (1.00) (1.00) 07 6.40 (0.35) (0.35) 42 6.75 (1.55) 8.30		Loose dark brown mottled grey slightly clayey gravelly fine to coarse SAND with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subrounded of mixed lithologies. Firm orangish brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Stiff orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. from 5.90m depth, dark brown in colour. from 6.10m depth, with occasional fine to coarse gravel sized pockets of orangish brown fine to coarse sand. Firm dark brown slightly sandy CLAY with occasional thin laminations. Firm and stiff dark orangish brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	
-					8.70-9	9.15 D26	(S)50/241mr (2,3,8,8,30,4	n	(0.60)		subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies. Very dense dark orangish brown becoming dark brown clayey gravelly fine to coarse SAND with low cobble content. Gravel is	9-
-						5 D27 0.00 B28		-4.8			subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of mixed lithologies.	
-									(0.80)		Firm orangish brown sandy gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. dark yellowish brown and	
										مد المعنية الجا منتقد المحية	Continued next sheet	
		ress & W Boreho		servation	NS Water	Borehole Depth (m)	Diameter	0	Diameter	Remarks:		
Date	Time	Depth (pth (m)	Depth (m)	6.00 10.00	Diameter (mm) [140 115	6.00	Diameter (mm)	 Sonic (3. Ground mins. From 3 Boreho 6. SPT has 	dug inspection pit to 1.20m. No serv drilling from 1.20m to 10.00m depth. dwater encountered at 4.00m rising 3.00m depth, limited recovery due to ble backfilled with bentonite upon co ammer id = GS RIG02. Hammer end	to 1.00m after 20 water ingress. mpletion.
										Release S	Status: Final	

	CESTA	LIN				ven FAS			Client:		deenshire Council	Borehole ID	14
Environ				act Number: 5414		Date Started: 22/10)/2013	3	Logged E		Checked By: MJB	Br Sheet 2+ of 2	-14
Combine & Dynar	ed Rota nic Sar	ary Cor mpler L	ed ^{Eastir} .0g	^{ng:} 387300		Northing: 785	769.6		Ground L	evel: 4.33	Plant Used: Sonic rig	Scale: 1:2	25
Cor	ing Inforn	nation		Sampl	es & In Situ	u Testing					Strata Details		Groundwater Backfill & Installation
TCR S	SCR R	QD I	FI Ru	n San	nple ID	Test Re	sult (m	Level 1 AOD)	Depth (m) (Thickness	Legend	Strata Description		Installation
								5.67	10.00		multicoloured slightly clayey very gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. ;;; 9.30m - 9.30m : from 9.30m depth, with occasional very thin beds (<50mm) of fine sandy clay. End of Borehole at 10.00 m		
		20 8 Wot-	r Obaan mt	0005	Borobal-	Diamotor	Casia		motor	Pomorile			
Boring	g Progres	Borehole Depth (m)	r Observati Casing Depth (m)	ONS Water Depth (m)	Depth (m)	Diameter Diameter (mm)	Casin Depth (m)			Remarks: 1. Hand of	dug inspection pit to 1.20m. No servi	ces encounter	ed.
		2 opur (n)		Sopari(III)	6.00 10.00	140 115	6.00		140	 Sonic of 3. Ground mins. 4. From 3 5. Boreho 6. SPT ha 	drilling from 1.20m to 10.00m depth. dwater encountered at 4.00m rising i 3.00m depth, limited recovery due to ole backfilled with bentonite upon co ammer id = GS RIG02. Hammer ene	to 1.00m after water ingress mpletion.	20

		STAIN		Contrac	t Name:	Stonehav	ven FAS			Client:	Aber	deenshire Council	Borehole ID
	L	аткш		Contrac	t Number:		Date Started:			Logged E	By:	Checked By:	BH5
Enviro	onmen	tal Se	rvices		5414		07/1 <i>′</i>	1/201	3		CLP	MJB	Sheet 1 of 3
	bined R namic S			Easting	387263	5.1	Northing: 785	765.3	3	Ground L	evel: 4.66	Plant Used: Sonic rig	Scale: 1:25
	Coring In	formation			Sampl	es & In Situ	u Testing					Strata Details	Groundwar Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult (Level m AOD)	Depth (m) (Thickness	Legend	Strata Description	Installatio
1												MADE GROUND. Asphalt.	
-						20 D1 ·1.20 B2			4.56 4.46	0.10 0.20		MADE GROUND. Asphalt. MADE GROUND. Brown sandy angular to rounded fine to coarse	
-										(1.00)		gravel of sandstone, quartzite, brick and mixed igneous lithologies with high cobble content. Cobbles are subangular to rounded of sandstone and quartzite.	- - - - - - - - - - - - - - - - - - -
-						1.65 D2A 2.00 B3	(S)N=13 (2,3,2,2,5,4	4)	3.46	1.20		MADE GROUND. Dark brown and multicoloured slightly clayey very gravelly fine to coarse sand. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and brick.	
-					2.00-	2.70 B4	(S)N=5 (2,1,2,1,1,1	1)	2.66	2.00		Loose dark orangish brown slightly clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	
-						-3.30 B5			1.96	2.70		Soft brownish yellow gravelly very sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone and quartz.	
-					3.1	3.45 D6 0 W22 EWW22	(S)N=12 (0,2,1,2,3,6	6)		(0.60)			3-
-						3.45 D7) ESD7			1.36	3.30	<u>116 stile</u> stile stile stile stile s	Dark brown amorphous PEAT with	
						·3.80 B8			1.21	3.45	stra stra stra stra stra x × x x	fine to coarse gravel sized pockets of soft grey slightly sandy clay.	
-					3.80-	5.00 B9			0.86	(0.35) 3.80		Greyish brown slightly silty fine to medium SAND with occasional gravel. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed	-
-					4.00-4	4.45 D10	(S)N=28 (4,5,6,11,5	,6)				lithologies. Dense brown and multicoloured very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies.	4 - - - -
										(1.70)		Continued next sheet	
Вс	oring Prog	gress & W	/ater Ob	servatio	ns	Borehole	Diameter	Cas	ing Dia	neter	Remarks:		
Date	Time	Boreh Depth	ole C	Casing pth (m)	Water Depth (m)	Depth (m) 2.00 10.50 13.50	Diameter (mm) 229 140 115		m) Dia	229 140	 Hand c Sonic c Rotary Ground mins. Boreho Boreho 	lug inspection pit to 1.20m. No servic drilling from 1.20m to 10.00m depth. drilling between 10.00m and 13.50m dwater encountered at 2.00m rising to ble complete at 13.50m upon enginee ble backfilled with bentonite upon com ammer id = GS RIG02. Hammer ener	depth. 9 1.84m after 20 r's instruction. pletion.
											Release S	status: Final	

Environmental Services 5414 07/11/2013 CLP MJB search at a star at at star at at star at at a star at at a star at at a star at at a star					Contra	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
Environmental Services Institute Institute <td></td> <td>C</td> <td>STAIN</td> <td></td> <td>Contra</td> <td>ct Number:</td> <td></td> <td>Date Started:</td> <td></td> <td></td> <td>Logged E</td> <td>By:</td> <td>Checked By:</td> <td>BH5</td> <td></td>		C	STAIN		Contra	ct Number:		Date Started:			Logged E	By:	Checked By:	BH5	
Combined Rotary Core Same Family 2000 Same Same Family 2000	Envir	onmen	ital Se	rvices		5414		07/11	1/201	13		CLP	MJB	Shoot 2 of 2	
Coring Mormation Samples & In Stur Testing Sinta Details TCR BCR ROD FI Run Samples & In Stur Testing Sinta Details TCR BCR ROD FI Run Samples & In Stur Testing Sinta Details TCR BCR ROD FI Run Samples & In Stur Testing Sinta Details TCR SCR ROD FI Run Samples & In Stur Testing Test Testing South Status South Status South Status South Status Test Testing Test Testing Test Testing Test Testing Test Testing Test Testing Test Test Test Test Test Test Test Test	Comb	bined R	otary (Cored	Easting		5.1	-	765.3	3	Ground I				
TCR SCR ROD FI Run Sample ID Text Read Length Lington Lington	-			-		Sampl	es & In Situ	u Testina					Strata Details	Gro	oundwater
Image: Subset of the second and the second					Run			-	sult	Leve	Depth (m	Legend		ln:	ackfill & stallation
Boring Progress & Water Observations Borehole Diameter (mm) Depth (m) Diameter (mm) Diameter (mm) 1. Hand dug inspection pit to 1.20m. No services encountered at 2.00m rising to 1.84m after 2.					Run	Sam 5.00-5 5.00-6 5.00-6 5.00-7 5.60 6.00-6 6.00-7 7.50-7 7.50-7 7.50-8 8.25-8	nple ID 5.45 D11 5.50 B12 0 W13 0 D14 6.00 B15 6.45 D16 7.50 B17 7.95 D18 0 D19 8.25 B20 9.30 B21	Test Re (S)N=112 (1,3,10,81, 0) (S)50/277m (3,8,11,14, 0) (S)50/194m (7,15,18,22)	nm 15,1	-0.85	5 5.50 (2.75) 8.25		Dense brown and multicoloured very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies. Firm becoming stiff dark brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone, quartz and mixed lithologies. between 7.50m and 7.70m depth, sandy. Very dense yellowish brown becoming dark yellowish brown and multicoloured slightly clayey gravelly fine to coarse SAND with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of		
In a stand dug inspection pit to 1.20m. No services encountered at 2.00m rising to 1.84m after 2 In a stand dug inspection pit to 1.20m. No services encountered at 2.00m rising to 1.84m after 2 Date Time Borehole Casing Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) Diameter (mm) Diameter (m	-									-4.65			CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.		
Date Borehole Depth (m) Casing Depth (m) Water Depth (m) Depth (m) Diameter (mm) Diameter (mm) I. Hand dug inspection pit to 1.20m. No services encountered 2. Sonic drilling from 1.20m to 10.00m depth. 0 2.00 229 2.00 229 3. Rotary drilling between 10.00m and 13.50m depth. 10.50 140 10.50 140 4. Groundwater encountered at 2.00m rising to 1.84m after 2.00m				Votor O'			Dorot-1	Diameter			ometer	<u>Domerti</u>			
Date Time Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 3. Rotary drilling between 10.00m and 13.50m depth. 13.50 115 10.50 140 140 4. Groundwater encountered at 2.00m rising to 1.84m after 2.00m		<u>т </u>	Borel	hole C	Casing	Water				<u> </u>				ces encountered.	
mins. 5. Borehole complete at 13.50m upon engineer's instruction 6. Borehole backfilled with bentonite upon completion. 7. SPT hammer id = GS RIG02. Hammer energy ratio =39% Release Status: Final	Date	Lime	Depth	ι (m) De	ະpīn (m)	ueptn (m)		229 140	2.0	00	229	 Sonic (3. Rotary 4. Groun- mins. Boreho 6. Boreho 7. SPT has 	drilling from 1.20m to 10.00m depth. drilling between 10.00m and 13.50n dwater encountered at 2.00m rising to ble complete at 13.50m upon engine ble backfilled with bentonite upon co ammer id = GS RIG02. Hammer end	n depth. to 1.84m after 20 er's instruction. mpletion.	

	P	STAIN		Contrac		Stonehav	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
Envir		ital Se	rvices		t Number: 5414		Date Started: 07/11	1/201	3	Logged E	^{By:} CLP	Checked By: MJB	BH Sheet 3 of 3	1 5
Comb	oined R	Rotary (Sample	Cored	Easting:	387263		Northing: 785	765.3	3	Ground L	evel: 4.66	Plant Used: Sonic rig	Scale: 1:2	25
-		formation	-			es & In Situ						Strata Details		Groundwate
TCR	SCR	RQD	FI	Run		iple ID	Test Re	sult	Level (m AOD	Depth (m) (Thickness	Legend	Strata Description		Backfill & Installation
-					10.00-1	10.50 B27 10 D26			-5.35	(0.50))	Reddish brown mottled greenish grey gravelly fine to medium SAND. Gravel is angular of sandstone.	-	
-				10.50		10.95 D28 -11.21 C	(S)50/75mr (19,6,50)	m	-5.85	10.50		Extremely weak dark greenish grey coarse grained SANDSTONE. Discontinuities are 70 deg medium spaced rough stepped.		
- 100 - - -	100	100				-11.90 C							- 11- - - - - - - - - - - - - - - - - -	
-			4	12.00		-12.58 C				(3.00)		from 12.00m depth, very weak.	12 - - - - - -	
- 100 	100	100			13.08	-13.30 C			0.05	42.50			- - - - - - - - - - - - - - 	
- - -									-8.85	13.50		End of Borehole at 13.50 m	-	
-													- 14 - - - -	
-													-	
		gress & W Boreh	nole C	Casing	Water	Borehole Depth (m)	Diameter Diameter (mm)		ing Dia		Remarks:	: dug inspection pit to 1.20m. No serv	ices encounter	red
Date	Time	Depth	(m) De	pth (m)	Depth (m)	2.00 10.50 13.50	229 140 115	2.0 10.5		229 140	 Sonic Rotary Groun mins. Boreho Boreho SPT h 	drilling from 1.20m to 10.00m depth y drilling between 10.00m and 13.50 idwater encountered at 2.00m rising ole complete at 13.50m upon engine ole backfilled with bentonite upon co ammer id = GS RIG02. Hammer en	n. m depth. to 1.84m after eer's instruction ampletion.	20 1.
											Release	Status: Final		

				Contra	ct Name:	Stonehav	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
		STAIN		Contra	ct Number:		Date Started:			Logged E		Checked By:	BH6	5
Enviro	nmen	ital Sei	vices		5414		05/11	1/201	3		CLP	MJB	Sheet 1 of 2	
Comb	oined R	Rotary C Sample	Cored	Easting	。 387160	.4	Northing: 7850	698.2	2	Ground L	evel: 5.34	Plant Used: Sonic rig	Scale: 1:25	
		formation	-		Sampl	es & In Situ	u Testina					Strata Details	Gro	oundwate Backfill &
TCR	SCR	RQD	FI	Run	· · ·	nple ID	Test Re	sult	Level (m AOD)	Depth (m) (Thickness	Legend	Strata Description	E	stallation
-						20 D1 0.50 B2			4.74	(0.60)		Grass over dark brown clayey gravelly fine to medium SAND with medium cobble content and frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies. (Possible Made Ground).	-	
-						1.20 B3						Medium-dense becoming dense light yellowish brown slightly clayey very gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of		
-					1.20 1.20-	1.65 D4) ESD4 ·2.00 B5	(S)N=29 (10,5,7,8,7,	7)		(1.75)		sandstone and mixed lithologies.		
-					2.00-	2.35 B6	(S)N=32 (10,15,13,1 3)	0,6,				at 2.00m depth, dense.	2 -	
-					2.35-	2.70 B7			2.99	2.35 (0.35)		Soft dark greyish brown slightly sandy CLAY with frequent gravel sized pockets of dark brown amorphous peat.		
-					3.00-	3.10 B8 3.45 D9 3.80 B10	(S)N=40 (7,7,7,7,8,1	8)	2.64 2.24	2.70 (0.40) 3.10		Dark brown slightly clayey gravelly fine to medium SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of mixed lithologies.	3	
-									1.54	(0.70)		Light orangish brown slightly clayey very gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of mixed lithologies.		
-					4.00-4	0 D11 4.45 D12 4.60 B13	(S)N=33 (2,4,7,8,9,9))		(0.35)		Firm reddish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	4 -	
-									1.19	4.15 (0.45)		Reddish brown mottled light greenish grey slightly gravelly clayey fine to medium SAND.		
-						0 D14 5.00 B15			0.74	4.60		Dense becoming very dense light greenish grey slightly clayey gravelly fine to medium SAND. Gravel is angular to subangular fine		
										<u> </u>		Continued next sheet		
Bc Date	Time	Boreh	ole C	servatio asing pth (m)	Water Depth (m)	Borehole Depth (m) 2.00 3.00 10.00	Diameter Diameter (mm) 229 140 115	Cas Depth (2.0 3.0		meter ameter (mm) 229 140	 Sonic of 3. Rotary Ground mins. Boreho 50mm 2.50m 	dug inspection pit to 1.20m. No serv drilling from 1.20m to 9.00m depth. drilling between 9.00m and 10.00m dwater encountered at 3.00m rising ble complete at 10.00m upon specifi standpipe installed upon completio and 4.50m depth. ammer id = GS RIG02. Hammer en	depth. to 2.72m after 20 ded depth. n, slotted between	
											Release S	Status: Final		

& Dyna	nmen ined R amic S	tal Sei tal Sei totary C Sample	Cored		t Number: 5414		Date Started:							10
& Dyna c	amic S	Sample		Eacting			05/11/	/2013	3	Logged B	CLP	Checked By: MJB	Sheet 2 of 2	46
		ormation	LOG		: 387160		Northing: 7856	98.2		Ground L	evel: 5.34	Plant Used: Sonic rig	Scale: 1:2	25
TCR	SCR				Sampl	es & In Site	u Testing					Strata Details		Groundwate Backfill &
-		RQD	FI	Run	Sam	nple ID	Test Resu	ult (m	Level n AOD)	Depth (m) (Thickness)	Legend	Strata Description		Installation
					6.0	5.45 D16 6.00 B17 0 D18 6.75 B19	(S)N=49 (11,14,10,11 ,16) (S)50/165mr (12,13,18,24	n				to coarse of sandstone. Detail 4.80m - 6.00m : below 4.80m depth, light yellowish brown in colour. from 5.00m depth, with occasional cobble sized pockets of stiff reddish brown very sandy clay.		
					7.50-7	7.50 B20 7.95 D21 8.00 B22	(S)50/150mr (13,12,17,33	n ;)		(4.40)		between 7.00m and 9.00m depth, gravelly fine to coarse sand.	- - - - - - - - - - - - - - - - - - -	
				9.00	8.00-5	9.00 B23			-3.66	9.00			- 8- - - - - - - - - - - - - - - - - -	
- - - - - - - -	100	93	5	3.00	9.39	-9.67 C			0.00	(1.00)		Very weak dark greenish grey coarse grained SANDSTONE. Discontinuities are 0-10 deg closely to medium spaced rough stepped stained brown. from 9.55m depth, discontinuities are 50 deg closely spaced smooth planar open with clay infill.		
Bor	ring Prog	ress & W					Diameter		ng Dian		Remarks:			I
Date	Time	Boreh Depth	ole (Casing epth (m)	Water Depth (m)	Depth (m) 2.00 3.00 10.00	Diameter (mm) E 229 140 115	2.00 3.00) Diai	meter (mm) 229 140	 Sonic e Rotary Ground mins. Boreho 50mm SPT has 	dug inspection pit to 1.20m. No serv drilling from 1.20m to 9.00m depth. drilling between 9.00m and 10.00m dwater encountered at 3.00m rising ole complete at 10.00m upon specif standpipe installed upon completio and 4.50m depth. ammer id = GS RIG02. Hammer en Btatus: Final	n depth. 1 to 2.72m after iied depth. n, slotted betw	20 een

				Contrac	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID
		STAIN		Contrac	t Number:		Date Started:			Logged I		Checked By:	BH7
Enviro	onmen	tal Se	vices		5414		04/1 ⁻	1/20	13		CLP	MJB	Sheet 1 of 2
	oined R namic S			Easting	: 387121	.2	Northing: 785	678.	8	Ground	_evel: 7.86	Plant Used: Sonic rig	Scale: 1:25
(Coring Inf	ormation			Sampl	es & In Situ	u Testing					Strata Details	Groundw Backfi
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Level (m AOI	Depth (m (Thickness	Legend	Strata Description	Installa
-						20 D1 •0.50 B2			7.56	(0.30)		Grass over dark brown clayey gravelly fine to coarse sand with frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone and mixed lithologies. (Possible Made Ground). (Topsoil). Dark brown clayey gravelly fine to	-
-						1.20 B3				(1.10)		coarse SAND with medium cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.	- - - 1- 1-
-					1.3	1.65 D4 30 D5 2.00 B6	(S)N=23 (1,4,2,6,5,1	10)	6.46	1.40	4 - 4 - 4 	at 1.20m depth, medium-dense.	-
-					1.40				0.40			Light yellowish brown and multicoloured slightly clayey gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	
-						2.45 D7 2.30 B8	(S)N=38 (1,5,7,7,11	,13)		(0.90)		at 2.00m depth, dense.	2-
-						3.00 B10 40 D9			5.56	2.30		Stiff reddish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	
-						3.45 D11 3.60 B12	(S)50/192r (12,11,16,2)			(1.30)			3-
-					3.60-4	4.00 B13			4.26	3.60		Reddish brown mottled light	
-										(0.40)		greenish grey and multicoloured slightly clayey gravelly fine to coarse SAND. Gravel is angular to subangular fine to coarse of sandstone.	
-				4.00	4.00-4	4.45 D14	(S)50/164r (13,12,16,2)		3.86	4.00		Assessed Zone of Core Loss.	4-
-			AZCL							(0.65)			-
57	9	9	NI		4.05	-5.13 C			3.21	4.65	· · · · · · · · · · · · · · · · · · ·	Very weak dark greenish brown coarse grained SANDSTONE. Discontinuities are 1) 10-20 deg closely to medium spaced rough Continued next sheet	
			latar O'	con cette	_ [1	Diamatar		sing D'	amotor	Pomoriu		
Bo Date	ring Prog Time	Boreh Depth	ole C	servatio asing pth (m)	NS Water Depth (m)	Borehole Depth (m)	Diameter		sing Dia (m) [ameter iameter (mm)	Remarks: 1. Hand	dug inspection pit to 1.20m. No servi	ices encountered.
04/11/2013 05/11/2013	3 1800	3.0	о :	pth (m) 3.00 3.00		2.00 3.00 9.00	229 140 115	2. 3.	00 00	229 140	 Sonic Rotary No gro Boreho Boreho 	drilling from 1.20m to 4.00m depth. v drilling between 4.00m and 9.00m of pundwater encountered during drilling ole complete at 9.00m depth upon er ole backfilled with bentonite upon co ammer id = GS RIG02. Hammer end	depth. g. ngineer's instruction. mpletion.
											Release S	Status: Final	

Environm Combine & Dynam TCR SC - - - - - - - - - - - - -	ed Ro nic Sa	al Sei otary C	Cored r Log	Easting: Run 5.50	387121 Sample Sam		Date Started: 04/11 Northing: 7856 J Testing Test Ret	678.		Cogged E Ground L Depth (m) (Thickness)	CLP evel: 7.86	Checked By: MJB Plant Used: Sonic rig Strata Details Strata Description planar and stepped. 2) 75 deg widely spaced rough planar. Detail 4.65m - 4.95m : between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	BH7 Scale: 1:25 Groundwa Backfill Installatio
Combine & Dynam	ed Ro nic Sa ing Info ICR	otary C cample prmation RQD	FI 1 NI	Easting: Run 5.50	387121 Sample Sam	.2 es & In Situ	Northing: 7856 u Testing	678.	8		evel: 7.86	Plant Used: Sonic rig Strata Details Strata Description planar and stepped. 2) 75 deg widely spaced rough planar. Detail 4.65m - 4.95m : between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	Scale: 1:25
& Dynam TCR SC 	nic Sa ing Info CR	ample ormation RQD	r Log Fl 1 NI 1 NI	Run 5.50	387121 Sample Sam	.2 es & In Situ pple ID	7856 Testing				7.86	Sonic rig Strata Details Strata Description planar and stepped. 2) 75 deg widely spaced rough planar. Detail 4.65m - 4.95m : between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	1:25
TCR SC		RQD	FI 1 NI 1	5.50	Sam	iple ID	<u> </u>	sult	Level (m AOD)	Depth (m) (Thickness)		Strata Description planar and stepped. 2) 75 deg widely spaced rough planar. Detail 4.65m - 4.95m between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	Groundwa Backfill Installatio
- 100 52			1 NI 1 NI	5.50			Test Res	sult	Level (m AOD)	Depth (m) (Thickness)		planar and stepped. 2) 75 deg widely spaced rough planar. Detail 4.65m - 4.95m : between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	Installatio
	52	44	NI 1 NI		5.50-	-5.94 C						widely spaced rough planar. Detail 4.65m - 4.95m : between 4.65m and 4.95m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine	-
	52	44										to coarse of sandstone. between 5.13m and 5.50m depth, recovered non-intact as reddish and greenish brown gravelly very clayey sand, Gravel is angular fine to coarse of	
			7	~								sandstone. between 5.94m and 6.42m depth, recovered non-intact as reddish and greenish brown gravelly sand, Gravel is angular fine to coarse of sandstone.	- 6 - - -
- - - - - - -				6.50	6.78-	-7.06 C				(4.35)			
-	84	75 -	NI 1 NI									between 7.33m and 7.34m depth, 1 no. 20 deg open fracture with red clay infill.	
-			3	8.00	7.75-	-8.00 C						from 8.00m depth, strong.	8-
- - - 100 8(86	79	4		8 56-	-9.00 C							
-			3			0.00 0			-1.14	9.00			- - - - -
												End of Borehole at 9.00 m	
-													-
Boring		ress & W	ater Oh	servation	ns l	Borehole	Diameter	Са	sing Dia	meter	Remarks:		
	Time	Boreh	ole C	asing	Water Depth (m)	Depth (m)		Depth			1. Hand o	ug inspection pit to 1.20m. No servi	ces encountered.
04/11/2013 05/11/2013	1800 1130	3.00) ;	3.00 3.00	1.35	2.00 3.00 9.00	229 140 115	2.0 3.0	00	140	 Rotary No gro Boreho Boreho 	drilling from 1.20m to 4.00m depth. drilling between 4.00m and 9.00m c undwater encountered during drilling le complete at 9.00m depth upon er le backfilled with bentonite upon co ammer id = GS RIG02. Hammer ene	g. ngineer's instruction. mpletion.
										-	Release S		

				Contra	ct Name:	Stoneha	ven FAS			Client:	Abero	deenshire Council	Borehole ID
	C	STAIN		Contra	ct Number:		Date Started:			Logged E		Checked By:	BH8
Enviro	onmen	tal Ser	vices		5414		02/11	1/201	3		CLP	MJB	Sheet 1 of 3
		otary C Sample		Easting	یر 387053		Northing: 7850	651.5	5	Ground L	.evel: 7.24	Plant Used: Sonic rig	Scale: 1:25
	Coring Inf	ormation	_		Sampl	es & In Situ	u Testing					Strata Details	Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Level (m AOD	Depth (m) (Thickness	Legend	Strata Description	Installation
-					0.3	10 D1 30 D2 -0.60 B3			7.17 6.94	0.07 (0.23) 0.30		MADE GROUND. Asphalt. MADE GROUND. Reddish brown gravelly fine to coarse sand. Gravel is angular to subangular fine to coarse of brick, clinker, limestone	
-						60 D4 •1.20 B5			6.64	(0.30) 0.60		and mixed lithologies. MADE GROUND. Brown slightly gravelly sandy clay. Gravel is subangular to rounded fine to coarse of brick, sandstone and] - -
						1.65 D6 2.00 B7	(S)50/269n (1,4,13,13, 0)		6.04	(0.60)		mixed igneous lithologies. MADE GROUND. Brown sandy subangular to rounded fine to cioarse gravel of limestone, clinker, sandstone and mixed igneous lithologies with low cobble content. Cobbles are subangular to rounded of sandstone and mixed igneous lithologies. Very dense light yellowish brown slightly clayey gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse subangular to subrounded	
-					2.00	2.45 D8) ESD8 2.80 B9	(S)50/219n (25,19,16,1			(1.60)		fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subrounded of sandstone, quartz and mixed lithologies.	2-
-					2.80-3 2.9	79 EW 3.70 B11 0 D10 3.45 D12	(S)50/200n (7,8,10,13,2		4.44	2.80		Stiff reddish brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies. from 3.20m depth, friable.	3-
-						4.00 B13			3.54	3.70		Very dense dark orangish brown slightly clayey gravelly fine to coarse SAND.	4-
-						4.45 D14 4.40 B15	(S)50/85mr (8,14,42,8)	m		(0.70)		from 4.20m depth, very clayey.	4-
-						0 D16 5.00 B17			2.84	4.40		Stiff locally hard reddish brown slightly sandy slightly gravelly CLAY with closely spaced thin beds of extremely weak light greenish grey sandstone. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Continued next sheet	
			latar O'	007		Dovela	Diamata		ina D'	meter 1	Pom	CONTINUED HEAL SHEEL	
Date 02/11/2013 04/11/2013	Time 3 1800		ole C (m) De	servatic asing pth (m) - 7.50	Water Depth (m) - -	Borehole Depth (m) 7.50 10.50	Diameter (mm) 140 105	Cas Depth (r 7.50	-	meter ameter (mm) 140	 Sonic d Rotary d Ground mins. Borehoo 50mm s 3.50m s 7. SPT hat 	lug inspection pit to 1.20m. No serv trilling from 1.20m to 5.00m depth. drilling between 5.00m and 10.50m lwater encountered at 5.00m rising le complete at 10.50m upon specif standpipe installed upon completio and 4.50m depth. Immer id = GS RIG02. Hammer en	i depth. to 4.66m after 20 ied depth. n, slotted between
L						<u> </u>	L				Release S	tatus: Final	

	C	STAIN		Contrac	S	Stoneha	ven FAS			Client:		deenshire Council	Borehole ID	10
					t Number: 5414		Date Started: 02/11	1/201	3	Logged I	^{3y:} CLP	Checked By: MJB	- Bł	18
Enviro	onmen bined R			Easting			Northing:			Ground I		Plant Used:	Sheet 2 of 3 Scale:	
	namic S			:	387053	.3	785	651.5	5		7.24	Sonic rig	1:2	25
	Coring In	formatior	1		Sampl	es & In Situ	u Testing					Strata Details		Groundwater Backfill & Installation
TCR	SCR	RQD	FI	Run		nple ID	Test Re	sult	Level (m AOI) Legend	Strata Description		
- - - - - - -	28	28	NI 10	5.00		-6.00 C	(\$)50/150n (14,11,27,2		2.24	(0.69)		Strong reddish brown SANDSTONi recovered as clayey sandy very angular to subangular fine to coarse gravel. Very strong reddish brown and grey coarse grained SANDSTONE. Discontinuities are randomly		
				6.00					1.24	6.00	· · · · · · · · ·	orientated very closely to closely spaced planar stepped straight and	6-	
-			AZCL							(0.63)		Assessed Zone of Core Loss.		
					6.63	-6.94 C			0.61	6.63		Very strong reddish brown and grey	/	
58	41	18	3							(0.29)		coarse grained SANDSTONE. Discontinuities are randomly	-	
-									0.32	6.92	00000	orientated very closely to closely spaced planar stepped straight and rough.		
-			NI									Very strong reddish brown fine grained CONGLOMERATE. Discontinuities are randomly	7+ - -	
-			12									orientated closely spaced planar stepped and straight, rough infilled	-	
-			NI	7.50	7.83	-8.19 C				(1.27)		(<15mm) with sandy fine to coarse gravel. between 6.94m and 7.17m depth, recovered non-intact. between 7.50m and 7.60m depth, recovered non-intact.	- - - 8- -	
- - - - - -	93	93	2	9.00	8.19	-8.65 C			-0.95	i 8.19		Very strong grey coarse grained SANDSTONE. Discontinuities are 1) closely spaced subhorizontal stepped planar rough closed. 2) subvertical undulating stepped rough closed.	- - - - - - - - - - - 9-	
-			15	9.00									-	
- - - 100 -	88	0	19		9.81-	10.03 C				(2.31)		Continued next sheet		
Bo	oring Prog	gress & V Boret			ns Water		Diameter			ameter	Remarks		nicco	ad
Date 02/11/2013 04/11/2013		Depth) 1.2	1 (m) De 10	Jasing apth (m) - 7.50	Water Depth (m) - -	Depth (m) 7.50 10.50	Diameter (mm) 140 105	Depth (140	 Sonic Rotary Grour mins. Boreh 50mm 3.50mr SPT h 	dug inspection pit to 1.20m. No se drilling from 1.20m to 5.00m depth / drilling between 5.00m and 10.50 dwater encountered at 5.00m risin ole complete at 10.50m upon spec standpipe installed upon completi and 4.50m depth. ammer id = GS RIG02. Hammer e Status: Final	n. m depth. g to 4.66m after ified depth. ion, slotted betwo	20 een

	C	STAIN				Stoneha	ven FAS			Client:		rdeenshire Council	Borehole ID	oL
Enviro	nment	tal Ser	vices		ct Number: 5414		Date Started: 02/11	1/201	3	Logged E	CLP	Checked By: MJB	BH Sheet 3 of 3	10
Comb & Dyn	ined R amic S	otary C ample	Cored r Log	Easting	^{;:} 387053		Northing: 7850	651.5		Ground L	.evel: 7.24	Plant Used: Sonic rig	Scale: 1:2	25
C	Coring Info	ormation			Sampl	es & In Situ	u Testing					Strata Details		Groundwater Backfill & Installation
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult (I	Level m AOD	Depth (m) (Thickness	Legend	Strata Description		Installation
- - -									-3.26	10.50		Very strong grey coarse grained SANDSTONE. Discontinuities are 1) closely spaced subhorizontal stepped planar rough closed. 2) subvertical undulating stepped rough closed. End of Borehole at 10.50 m		
													- - - - - - - - - - - - - - - - - - -	
													- 12 - - - - - - - - - - - - - - - - - -	
-													- - - - - - - - - - - - - - - - - - -	
													- - 14 - - - - - - - - - -	
			atar O			Devel	Diorect				Demail		-	
Boı Date	ring Prog Time	Boreho Depth (servatio asing pth (m)	Water Depth (m)	Borehole Depth (m)	Diameter Diameter (mm)	Casi Depth (n		ameter (mm)	Remarks 1. Hand	dug inspection pit to 1.20m. No serv	ices encounter	ed.
02/11/2013 04/11/2013	1800	1.20 10.50)	- 7.50	 	7.50 10.50	140 105	7.50		140	 Sonic Rotary Groun mins. Boreh 50mm 3.50m SPT h 	drilling from 1.20m to 5.00m depth. y drilling between 5.00m and 10.50m ndwater encountered at 5.00m rising	n depth. to 4.66m after ied depth. n, slotted betwo	20 een

	Contract Name:	tonehave	on FAS		Client:	Abor	deenshire Council	Borehole ID
CESTAIN	Contract Number:		Date Started:		Logged		Checked By:	BH9
Environmental Service	5414		28/10/2	2013	Logged	CLP	MJB	Sheet 1 of 1
Combined Rotary Cored & Dynamic Sampler Log	Easting: 387035.		lorthing: 7856	52.6	Ground	Level: 7.08	Plant Used: Sonic rig	Scale: 1:25
Coring Information	Sample	es & In Situ 1	Testing				Strata Details	Groundwater Backfill &
TCR SCR RQD FI	Run Samp	ole ID	Test Resu	ult Lev (m A0	el Depth (r DD) (Thicknes) Legend	Strata Description	Installation
							MADE GROUND. Asphalt.	
		0 D1).50 B2		6.9	(0.50)		MADE GROUND. Dark brown slightly clayey gravelly fine to coarse sand with low cobble content. Gravel is angular to subangular fine to coarse of asphalt, brick, sandstone and quartz. Cobbles are of sandstone and asphalt.	
	0.80-1	I.20 B3		0.4	0.00		Dense becoming very dense dark orangish brown gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. from 1.00m depth, with low cobble content of subangular to	
		2.00 B5	(S)N=48 (5,9,10,10,12 6)	2,1	(1.80)		subrounded sandstone, quartz and mixed lithologies.	
	2.00		(S)50/182mr (25,26,19,5)	n			at 2.00m depth, very dense.	2-
		0 D8 3.00 B9		4.6	8 2.40		Stiff pinkish reddish brown slightly sandy gravelly CLAY with frequent fine to coarse gravel sized pockets of greenish grey fine to coarse sand. Gravel is subangular fine to coarse of sandstone and quartz.	
			(S)50/175mn (25,25,20,5)	n	(1.60)		from 3.10m depth, with low cobble content of subangular sandstone.	3
		0 D12 .00 B13					between 3.50m and 3.60m depth, sandy.	
	4.20-5.		(S)50/5mm (25,50)	3.0 2.8			Greenish grey mottled pinkish brown slightly clayey sandy GRAVEL with medium cobble content. Gravel is angular, fine to coarse of sandstone. Cobbles are	4
					(0.80)		Angular of sandstone. Cooperation angular of sandstone. Strong greenish grey fine to medium grained SANDSTONE.	
Boring Progress & Water O		Borehole D		Casing [Remarks:		I
Date Time Depth (m) [Casing Water epth (m) Depth (m)	3.00 5.00	Diameter (mm) D 140 115	3.00	Diameter (mm	 Sonic Boreho Boreho Moistu Ground Ground Boreho 	dug inspection pit to 1.20m. No servin drilling from 1.20m to 5.00m. ble complete at 5.00m upon schedule re encountered at 1.80m depth. dwater encountered at 3.00m depth, is. ble backfilled with bentonite upon cor ammer id = GS RIG02. Hammer ene	ed depth. rising to 1.87m after npletion.
						Release S	Status: Final	

	P	TA IN		Contra	ct Name:	Stonehav	ven FAS		Client:	Aber	deenshire Council	Borehole ID
		STAIN			ct Number: 5414		Date Started: 28/10/2	2013	Logged	By: CLP	Checked By: MJB	BH10
	onmen			Easting	-		Northing:		Ground		Plant Used:	Sheet 1 of 1 Scale:
	bined R				387009	.6	78565	57.3		7.96	Sonic rig	1:25
(Coring Inf	ormation			Sampl	es & In Situ	u Testing				Strata Details	Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Resul	t Leve (m AC	Depth (m D) (Thickness) Legend	Strata Description	Installation
								7.86			MADE GROUND. Asphalt.	
-											MADE GROUND. Dark orangish brown slightly clayey gravelly fine to	, -
						30 D1 ·0.50 B2			(0.50)		coarse sand with low cobble content. Gravel is subangular to	j
-											subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular	-
-								7.36	0.60		to subrounded of sandstone and mixed lithologies.	7
_					0.80-	1.20 B3					Dark orangish brown gravelly fine to medium SAND with low cobble	
-									(0.60)		content. Gravel is subangular to subrounded fine to coarse of	-
_											sandstone, quartz and mixed lithologies. Cobbles are subangular	1-
-					1.20-	2.00 B4	(S)N=1	6.76	5 1.20	× × × × ×	to subrounded of sandstone and mixed lithologies.	7
-							(0,0,1,0,0,0)			$(\times \times$	Soft dark orangish brown occasionally mottled light orangish	-
-											brown very sandy SILT.	
-										$\times \times $		-
-										:		
-									(1.30)	$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \\ \times \times \times \times \end{array}$	from 1.80m depth, becoming gravelly with low cobble content.	-
-					2.50 B5 ESB5	(S)N=10			:	Gravel is subangular to subrounded fine to coarse of	2-	
-					2.00	2000	(3,3,4,3,2,1)			$\times \times \times \times \times$	sandstone, quartz and mixed lithologies. Cobbles are]
-										$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \times \\ \times \times \times \times \times \end{array}$	subangular to subrounded of sandstone and mixed lithologies.	-
-					2.50	2 E0 DC		EAG	2.50	: X X X X X X X X X X X X X X		-
-					2.50-	·3.50 B6		5.46	2.50		Loose slightly silty gravelly fine to coarse SAND with low cobble	-
-											content. Gravel is subangular to subrounded fine to coarse of	-
-											sandstone, quartz and mixed lithologies. Cobbles are subangular	
-					3.00-	3.45 D7	(S)N=6		(1.00)		to subrounded of sandstone and mixed lithologies. from 3.00m depth, very silty.	3-
-							(0,0,0,0,3,3)				nom 3.00m depin, very sity.	-
-												-
-												-
-					3.50-	4.30 B8		4.46	3.50		Loose dark orangish brown silty gravelly fine to coarse SAND. Grave	si - I
-											is subangular to subrounded fine to coarse of sandstone, quartz and	-
									(0.00)		mixed lithologies.	
					4.00-	4.45 D9	(S)50/190mm		(0.80)			4 -
-							(12,13,12,20,					-
							ľ	3.66	4.30			
											Very dense green grey mottled pinkish brown slightly clayey sandy	-
					4.50-	5.00 B10					angular to subangular fine to coarse GRAVEL of sandstone.	
									(0.70)			
-												
İ												
	oring Prog	ress & W Boreh		servatio	INS Water			Casing D	iameter Diameter (mm)	Remarks:		
Date	Time	Depth		epth (m)	Depth (m)	Depth (m) 4.00	140	epth (m) 4.00	Diameter (mm)	2. Sonic	dug inspection pit to 1.20m. No ser drilling from 1.20m to 5.00m. ble complete at 5.00m upon schedu	
						5.00	115		1-10		dwater encountered at 2.00m depth	
										5. Boreho	ble backfilled with bentonite upon c ammer id = GS RIG02. Hammer ei	
										Release S	Status: Final	

COST	TAIN	Ston	act Name: nehaven F <i>i</i> act Number:	AS	Date St	tarted:		Client: Aberdeen:	shire Council	Borehole I	^{⊳:} BH11
Invironment	al Servic		5414			22/10/20	013	MC	MJB	Sheet 1 of	
Cable Per		Easting			Northin			Ground Level:	Plant Used:	Sheet 1 of Scale:	
Borehol		3	86913.8		78	85652.3	3	9.28	Cut down CP		1:25
	es & In Situ T	esting						Strata Details			Groundwater
Sample ID		Test Resul	lt (r	Level m AOD)	Depth (m	n) Legend s)		Strata Details	iption		Water Backfill/
0.00 D1				n AOD)	(thickness	∞				1	Strike(s) Installation
				9.18	0.10		with ro	GROUND: Brown slightly si otlets. Sand is fine to coarse rounded, fine to coarse of b	e. Gravel is angular	/ _	
0.20 D2							MADE	GROUND: Brown slightly si	ilty slightly gravelly sand	/[
							with roo	otlets. Sand is fine to coarse rounded, fine to coarse of b	e. Gravel is angular	-	
0.50-0.90 B	3				(0.80)		sandsto			-	
							ł			t I	
							í				
			;	8.38	0.90	<u>XXXX</u>		GROUND: Grey concrete.		+	
							·	Borehole at 0.90 m			
							I				
							I			-	
							I			-	
							I			-	
							I			Ĺ	
							I			-	
							I			-	
							I			-2	
							I				
							I			-	
							I			-	
							I				
							I				
							I			-	
							I				
							I			-3	
							I			-	
							I			-	
							I				
							I				
							I			-	
							I			-	
							I				
							I			-4	
							I			-	
							I			-	
							I			t I	
							I				
							I			-	
							I			-	
							L				
Boring Progre	ess & Water	Ohserva	tions	De	onth/Casi	ng Diame	oter R	emarks:			
Date Time	Borehole	Depth of Casing (m)			pth (m)	Casing	ng r (mm) 1.	Hand dug inspection pit to	0 90m depth.		
	Depth (m)	Casing (m)	Deptri (m)	+	F	Diameter	2.	Cut down rig assembled of Borehole terminated on co	n position.	n denth and	
				Dent	th/Boreh	ole Diam		backfilled with arisings up	on completion.		
				-	epth (m)	ole Diame	nole	Cut down rig disassembled	a and moved to new positio	л оп на.	
			1			Diameter	(mm)				

	C	STAIN				toneha	ven FAS			ent:		eens	hire Council	Borehole ID	111
Enviro	onmen	tal Sei	rvices		act Number: 5414		Date Started: 22/1()/2013	Loç	gged By:	MC		Checked By: MJB	BH Sheet 1 of 1	
	bined R ble Per			Eastin	^{g:} 386913.		Northing: 785	652.3	Gro	ound Lev	el: 9.28		Plant Used: Cut down CP	Scale: 1:2	25
(Coring Inf	ormation			Sample	es & In Site	u Testing					Str	ata Details		Groundwater Backfill & Installation
TCR	SCR	RQD	FI	Run	Sample ID		Test Resul	t	Level (m AOD	Depth (r (Thicknes	n) Legend		Strata Description		Installation
TCR	SCR	RQD	FI	Run	Sample ID 0.00 D1 0.20 D2 0.50-0.90 B3	S	Test Result	t	Level (<u>m AOD</u> 9.18 8.38	Depth (r (Thickness 0.10 (0.80) 0.90	n Legend	silty s rootlet Grave fine to sands MADE silty s rootlet Grave fine to sands MADE	GROUND: Brown slightly ightly gravelly sand with s. Sand is fine to coarse. I is angular to well rounded, coarse of brick and tone. GROUND: Brown slightly ightly gravelly sand with s. Sand is fine to coarse. I is angular to well rounded, coarse of brick, coal and		
- - - - - - - - - - - - - - - - - - -	pring Prog Time	ress & W Boreh Depth	ole C	Servati Casing apth (m)	DNS Water Depth (m)	Borehole Depth (m)	Diameter Diameter (mm)	Casing Depth (m)	Diamete	r (mm) 1. 2. 3.	Cut dow Borehole backfille	n rig as e termi ed with	ection pit to 0.90m depth. ssembled on position. nated on concrete obstruc arisings upon completion sassembled and moved t	ction at 0.90m de	
										R	elease St	atus:Fir	nal		

			Cont	ract Name:	Stonehav	ven FAS		Cli	ent:	Abero	leenshire Council	Borehole ID
	C .	STAIN	Cont	ract Number:		Date Started:		Lo	gged By:		Checked By:	BH11A
Enviro	onment	tal Servic	es	5414		22/10	0/2013			MC	MJB	Sheet 1 of 2
		otary Core cussion Lo		^{ng:} 386915	5.7	Northing: 785	653.2	Gr	ound Lev	^{el:} 9.21	Plant Used: Cut down CP / M.I.2	Scale: 1:25
(Coring Inf	ormation		Sampl	es & In Siti	u Testing					Strata Details	Groundwat Backfill 8
TCR	SCR	RQD F	l Run	Sample ID		Test Resul	t		Depth (r	n) s)Legend	Strata Description	Installatio
				0.00 D1 0.20 D2 0.30 D3 0.50-1.20 B 1.20-1.65 D 1.20 ESD5 1.20-2.00 B	4 5 (1 6 7 (1	S)N=2 (1,0,1,0 S)N=2 (1,0,0,1	9,1,0)	(<u>m AOD</u> 9.11 8.91 7.31	0.10 0.30 (1.60)		MADE GROUND: Brown slightly silty slightly gravelly fine to coarse sand with occasional rootlets. Gravel is subangular to well rounded fine to medium of sandstone. MADE GROUND: Reddish brown gravelly fine to coarse sand. Gravel is angular to rounded fine to medium of sandstone and brick. MADE GROUND: Reddish brown gravelly sand with medium cobble content. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of sandstone, brick and clinker.	
				3.00-3.45 D 3.00-3.50 B1	9 (1	S)N=6 (0,0,0,1	,0,5)		(1.60)		at 3.00m depth, loose.	
				3.50-3.70 D1 3.50-4.50 B1		50/120mm (25	,20,30)	5.71	3.50		Reddish grey SANDSTONE recovered as fine to coarse sand and angular fine to coarse gravel of sandstone.	
-				4.50-4.70 D1		0/150mm (20,		4.51	4.70 (0.30)		NO RECOVERY.	
Bo	oring Prog	Borehole	Observat Casing	tions Water		Diameter	-	Diamet		emarks:		
Date 22/10/2013	Time 3 1600	Borehole Depth (m) 4.70	Casing Depth (m) 4.10	Water Depth (m)	Depth (m) 4.50	Diameter (mm)	9 Depth (m) 4.10	Diamete 15	2. 3. 4. 5. 6.	Cut dov Cable p 4.70m d Chiselli Rotary f SPT ha	ug inspection pit to 1.20m depth. I vn rig assembled on position. vercussion drilling with cut down ri depth. ng 3.70m to 4.50m - 1 hour. follow-on between 4.70m and 10.0 mmer id = WB1. Hammer energy	g between 1.20m and 00m depth.

				Conti	ract Name:	toneha	ven FAS		Cli	ent:		Abero	lee	nshire Council	Borehole ID	
	C	STAIN		Cont	ract Number:		Date Started:		Loc	ged B				Checked By:	- вн	11A
		() 0			5414)/2013		J900 D		/IC		MJB		1 17 (
Enviro				Easti			Northing:		Gro	ound L		-		Plant Used:	Sheet 2 of 2 Scale:	
	oined R ole Per				386915	.7	785	653.2			9.	.21		Cut down CP / M.I.2	1::	25
	Coring In	formatior	1		Sample	es & In Situ	u Testing							Strata Details		Groundwater Backfill &
TCR	SCR	RQD	FI	Run	Sample ID		Test Resul	t	Level (m AOD	Depth (Thickn	(m) iess)	egend		Strata Description		Installation
- - -			NI 12	5.00	5.45-5.55 C1	4			4.21	5.00)		CO Di Ve Clo Clo ro	ery strong grey mottled brown barse grained SANDSTONE. scontunuities are: 1) 90-80 deg, ery closely spaced planar rough osed stained brown. 2) 0-20 deg, osely spaced curved stepped ugh closed stained brown. between 5.00m and 5.78m		· · ·
97	52	0	NI											depth, recovered non-intact.		
-			18												6-	
-			NI	6 50	6.47-6.84 C1	5					•			between 6.20m and 6.50m depth, recovered non-intact.		
			10	6.50												
-			NI											between 6.61m and 6.79m depth, recovered non-intact.		
100	43	14	10								:		:	between 6.84m and 7.20m		
-			NI	7.20							•			depth, recovered non-intact.	7 -	
-			AZCL NI	1.20										between 7.25m and 7.37m		
- - 93 - -	71	0	13							(5.00))			depth, recovered non-intact.		
-			30	8.00							-				8-	
-																
- - - 100	38	0	NI 10	-							•			between 8.25m and 8.30m depth, recovered non-intact.	· ·	
]												1
			NI 20	1							-			between 8.70m and 8.83m depth, recovered non-intact.		
			29 NI											between 8.90m and 9.00m	9-	
- - 100	80	52		9.00	9.25-9.50 C1	6					•			depth, recovered non-intact. below 9.00m depth, discontinuities are medium spaced.	9-	
-			4	9.50	9.50-10.00 C ⁴	17					•					
- 100 -	100	40									•				· ·	
Ro	ring Proc	aress & V	Vater Oh	n servat	ions I	Borehole	Diameter	Casing	Diamete	er	Ren	narks:	E	nd of Borehole at 10.00 m		1
Date	Time	Borel Depth	hole (Casing epth (m)	Water Depth (m)	Depth (m)	Diameter (mm)	Depth (m)	Diamete	r (mm)	1. 1	-land d	ug ir	nspection pit to 1.20m depth. g assembled on position.	No services end	countered.
22/10/2013	3 1600	4.7		4.10	-	4.50	150	4.10	15	0	3. (4. (5. F 6. S	Cable p 4.70m Chiselli Rotary SPT ha	ercu depti ng 3 follo	ussion drilling with cut down h. 8.70m to 4.50m - 1 hour. w-on between 4.70m and 10 er id = WB1. Hammer energ	.00m depth.	m and
					1						Rel	ease S	tatus	s:Final		

				Contra	ct Name:					Client:				Borehole ID	
	C	STAIN			S	Stonehav	/en FAS				Aber	deens	hire Council		0
					ct Number:		Date Started:	1/20-	12	Logged			Checked By:	BH1	2
Enviro					5414		17/10	JI 20'	13	0	CLP		PS	Sheet 1 of 2	
	bined R			Easting	։ 386920		Northing: 7856	331	7	Ground	Level: 9.88		Plant Used: Sonic rig	Scale: 1:25	
	namic S		•					JJ 1.			9.00		, C		
I	Coring In					es & In Situ	r – –		Lava	Denth (n		Sti	rata Details	-	Froundwater Backfill & Installation
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Res	sult	Level (m AO	Depth (m D) (Thicknes	Legend		Strata Description		
-					0.35-1	1.20 LB2			9.70 9.65 9.60 9.53	0.23 0.28		MADE fine to igneo	E GROUND. Dark grey angula o coarse gravel of mixed us lithogies. E GROUND. Tarmacadam.	- r -	
-									9.08	(0.45)		MADE slightl grave	E GROUND. Reddish pink ly sandy angular fine to coarse l of mixed igneous lithologies. E GROUND. Compacted	, 	
-					1.0	00 D1			9.06	(0.40)		reddis mediu conte	sh brown very gravelly fine to im sand with high cobble nt. Gravel is subangular to wel led fine to coarse of mixed	- - II 1-	
-						1.45 D3 1.50 B4	(S)N=31	1)	8.68	1.20		litholo	ogies. Cobbles are subrounded Il rounded of mixed	1	
							(5,6,6,6,8,1	''		(0.30)			ish brown very gravelly fine to um SAND, with medium]	
						-1.80 B7 60 D6			8.38	1.50		cobbl subro	e content. Gravel is unded to well rounded fine to e of mixed lithologies.	÷	
-					1.0					(0.30)		Cobb	e of mixed lithologies. les are subrounded to well led of mixed lithologies.		
-					1.80-	2.00 B8			8.08	1.80		orang	e dark brown becoming dark ish brown gravelly silty fine to e SAND. Gravel is angular to	,	
-						2.50 B10 2.45 D9	(S)50/135m (25,0,37,13					subro limest	unded fine to coarse of tone, quartzite, quartz and l lithologies.	2-	
-					2.50-3	3.00 B11				(1.30)		grave Grave fine to quartz	gish brown slightly clayey Ily fine to coarse SAND. el is angular to subrounded o coarse of sandstone, quartz, zite and mixed lithologies.	-	
-						3.50 U12 0 U12						slight CLAY pinkis Grave to coa mixed	becoming stiff, orangish brown ly sandy slightly gravelly 'with thick laminations of ih brown fine to medium sand. el is subangular to rounded fine arse of sandstone, quartz, and I lithologies. From 2.00m to 2.45m depth,	 	
-									6.78	3.10 (0.50)		sar Col lith	ndy with high cobble content. bbles are subangular of mixec ologies. From 2.50m depth, very stiff,		
-						0 D13 4.00 B14			6.28	3.60		grave SANE subro sands	dense orangish brown slightly Ily very clayey fine to medium D. Gravel is subangular to unded fine to medium of stone, quartz, quartzite and	-	
-						4.45 D15 5.00 B16	(S)50/233m (6,11,13,15 4)			(1.40)		Very s locally very s subar mediu	I lithologies. stiff friable orangish brown y mottled grey, slightly gravelly sandy CLAY. Gravel is igular to subrounded fine to um of sandstone, quartz and I lithologies.	/ 4- - - - - - -	
-												Conti	inued next sheet	-	
Bo	oring Prog			servatio	ns	Borehole	Diameter	Cas	sing Di	ameter	Remarks:				
Date 17/10/2013 18/10/2013 18/10/2013	Time 3 1730 3 0800	Boreh Depth 8.0 8.0	nole C (m) De 0 0	Casing epth (m) 3.00 3.00 3.00 3.00	Water Depth (m) - 5.37 -	Depth (m) 3.00 8.00 10.00	Diameter (mm) 140 115 105	Depth 3.0	(m) [Diameter (mm	 Sonic Rotary Ground of shift Boreho 	drilling fr coring f dwater e t. ble backt	ection pit to 1.20m. No ser rom 1.20m to 8.00m. rom 8.00m to 10.00m. incountered overnight . Sitt filled with bentonite on con d = GS RIG02. Hammer et	ting at 5.37m at stan	
											Release S	Status:	Final		
		_				•									

	Г	STAIN		Contrac	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
	onmen	tal Sei			t Number: 5414		Date Started: 17/1(Northing:)/20′	13	Logged F	CLP	Checked By: PS Plant Used:	Sheet 2 of 2 Scale:	112
	bined R namic S			Easting	: 386920		-	631.	7	Ground I	9.88	Sonic rig		25
	Coring In	formation			Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill & Installation
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Leve (m AO	l Depth (m D) (Thickness		Strata Description		Installation
-						5.45 D17 6.00 B18	(\$)50/129n (13,12,26,2	nm 24)	4.88	5.00		Very dense pinkish brown slightly gravelly clayey fine to medium SAND. Gravel is subangular to subrounded fine to medium of sandstone and quartz.		
-						6.45 D19 7.00 B20	(S)50/75mi (13,12,50)	m		(3.00)			6	-
						7.45 D21 8.00 B22	(S)50/99mi (14,11,35,1	m I5)				from 6.80m depth, thinly laminated with occasional lenses of stiff clay.	7 -	
- - - 100 - -	0	0	NI	8.00					1.88	8 8.00 (1.00)		Very weak red brown speckled grey and white fine grained SANDSTONE recovered as non intact clayey sandy angluar fine to coarse gravel. between 8.00m and 9.00m depth, recovered non-intact as clayey sandy angular fine to coarse gravel.	8	-
- - - - - 100	83	50			9.14-9	9.34 C23			0.88	9.00		Weak red brown speckled grey and white fine grained SANDSTONE. Discontinuities are very closely to closely spaced horizontal stepped closed.	9	-
- - - -			4		9.65-9	9.80 C24				(1.00)				-
В	oring Prog						Diameter			iameter	Remarks:	End of Borehole at 10.00 m		Į
Date 17/10/201 18/10/201 18/10/201	3 0800	8.00	(m) De D	Casing ppth (m) 3.00 3.00 3.00 3.00	Water Depth (m) - 5.37 -	Depth (m) 3.00 8.00 10.00	Diameter (mm) 140 115 105	Depth 3.0		Diameter (mm)	 Sonic c Rotary Ground of shift Boreho SPT hat 	dug inspection pit to 1.20m. No serv drilling from 1.20m to 8.00m. coring from 8.00m to 10.00m. dwater encountered overnight . Sitti le backfilled with bentonite on com ammer id = GS RIG02. Hammer en	ng at 5.37m at pletion.	start

		TT-1 (8)		Contra	ict Name:	Stonehav	/en FAS			Client:	Abero	leenshire Council	Borehole ID
	LEi	STAIN		Contra	ct Number:		Date Started:			Logged E	By:	Checked By:	BH13
Enviro	nmen	tal Sei	rvices		5414		18/10)/201	3		CLP	PS	Sheet 1 of 2
	oined R			Easting	g:		Northing:			Ground L	evel:	Plant Used:	Scale:
	namic S				386957	'.9	785	642.3	5		8.94	Sonic rig	1:25
(Coring Inf	ormation			Sampl	es & In Situ	u Testing					Strata Details	Groundwat Backfill &
TCR	SCR	RQD	FI	Run	ı Sam	nple ID	Test Re	sult (Level m AOD	Depth (m) (Thickness	Legend	Strata Description	Backfill & Installatio
												MADE GROUND. Asphalt.	
									8.84	0.10		MADE GROUND. Concrete.	
					0.3	30 D1			8.69	0.25		MADE GROUND. Reddish brown	
					0.30-	0.70 LB2						very gravelly fine to medium sand. Gravel is subangular to well	
												rounded, fine to coarse of mixed lithologies.	1 833
										(0.95)		from 0.70m to 0.74m depth, thin layer of tarmacadam (0.37m	
												back from kerb line).	-
													1-
					1 20.	-2.00 B3	(0)50/10		7.74	1.20			
					1.20	00	(S)50/43mi (0,1,50)	n				Very dense orangish brown slightly clayey gravelly fine to coarse	
											4	SAND, with low cobble content. Gravel is subangular to subrounded	
										(0.00)		fine to coarse of sandstone, quartz, quartzite and mixed lithologies. With	
										(0.80)	هد فرقت ایر اور اور اور اور اور اور اور اور اور اور	occasional roots (possible Made Ground).]]]
					2.00-	·2.45 D4 ·3.00 B5	(S)N=9 (0,0,1,3,3,2	»)	6.94	2.00	××××	Loose dark orangish brown slightly gravelly silty fine to medium SAND.	2-
					2.00	ESD4	(0,0,1,0,0,0	-/			× × × ×	Gravel is subangular to subrounded fine to coarse of sandstone, quartz	
											××××	and mixed lithologies (possible	
										(1.00)	X X X X X X X	Made Ground).	
										(1.00)	∩x × × × × ×		
											× × × ×		
											X X X X X X X		
					3.00	-3.45 D6			5.94	3.00	× × × ×		
					3.00-	-4.00 D7 04 EW	(S)N=23 (11,7,6,7,6	,4)	0.04	0.00		Medium dense dark orangish brown slightly clayey very gravelly fine to	
					3.0	04 ⊑ VV						coarse SAND. Gravel is subangular to subrounded fine to coarse of	
												mixed lithologies.	
										(1.70)			
					4.00-	4.45 D8	(S)50/194n						4-
						4.50 B9	(8,17,25,16	5,9)				from 4.00m depth, clayey.	4
					4.5	0 D10							
					4.70-	5.50 B11			4.24	4.70		Firm becoming very stiff thinly laminated light pinkish brown	
												mottled light grey slightly gravelly	
						L =				ļ		Continued next sheet	
	oring Prog	Boreh	ole (Casing	Water	Borehole Depth (m)	Diameter Diameter (mm)	Casi Depth (r	ng Dia	meter ameter (mm)	Remarks: 1. Hand d	ug inspection pit to 1.20m. No serv	ices encountered.
Date 18/10/2013		Depth 8.5	0	epth (m) 7.00	Depth (m) 3.36	7.00	140	7.00		140	2. Sonic d	rilling from 1.20m to 9.00m. coring from 9.00m to 10.00m.	
19/10/2013		10.0	00	7.00	-	8.50 10.00	115 105					water encountered at 3.45m rising	to 3.13m after 20
											5. 50mm d	diameter standpipe installed with s 00m to 5.00m.	lotted response zone
											6. 19mm d	diameter piezometer installed with se zone from 6.50m to 7.50m.	tip at 7.00m and
1											7. SPT ha	se zone from 6.50m to 7.50m. mmer id = GS RIG02. Hammer en	ergy ratio =39%
1													

	C.	STAIN		Contra	ct Name:	Stoneha	ven FAS			Client:	Abero	deenshire Council	Borehole ID	
		01K		Contra	ct Number:		Date Started:			Logged I		Checked By:	BH13	
Enviro	onmen	tal Se	rvices		5414		18/10)/201	3		CLP	PS	Sheet 2 of 2	
	bined R			Easting	g:		Northing:			Ground	_evel:	Plant Used:	Scale:	
	namic S				386957	'.9	7856	642.3	3		8.94	Sonic rig	1:25	
	Coring Inf	formation	ì		Sampl	les & In Situ	u Testing					Strata Details	Grou	ndwater
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re:	sult (Level (m AOD	Depth (m) (Thickness	Legend	Strata Description	Insta	allation
-						5.45 D12	(S)50/129rr (8,11,11,39	nm		(0.80)		sandy CLAY. Gravel is angular to subangular, fine to medium of sandstone and quartzite. from 5.00m depth, friable.	-	
					6.00-	6.00 B13 6.45 D14 6.75 B15	(S)50/39mr (18,7,50)	n	3.44	5.50		Very dense light pinkish brown mottled light grey clayey gravelly fine to medium SAND. Gravel is subangular to subrounded fine to coarse of sandstone and quartz.	- - - 6 -	
							(10,7,00)							
-					6.75-	7.50 B16			2.24	6.70		Orangish brown clayey sandy GRAVEL with low cobble content. Gravel is angular to subrounded fine to coarse of mixed lithologies. Cobbles are angular to subrounded of mixed lithologies.	7-	
-					7.50-	7.95 D17	(S)50/5mm		1.44	7.50				
-						8.50 B18	(25,50)					Very dense dark orangish brown slightly clayey sandy GRAVEL, with medium cobble content. Gravel is angular to rounded fine to coarse of sandstone and quartz. Cobbles are subangular of sandstone.		
-					8.50-	9.00 B19				(1.50)				
-				9.00	9.00)-9.53 C			-0.06	9.00		Strong red brown coarse grained	- - - 9-	
			4									SANDSTONE. Discontinuities are closely to medium spaced 45 degree inclined stepped clean.		
- 100 - - -	90	83	NI 5 NI							(1.00)		between 9.58m and 9.63m depth, non intact recovered as slightly sandy clayey angular fine to coarse gravel.		
			8	<u> </u>			<u> </u>					End of Borehole at 10.00 m		
	oring Prog	Boreh	nole (Casing	ONS Water	Borehole Depth (m)	Diameter	Cas Depth (I	ing Dia	ameter iameter (mm)	Remarks:	Lnd of Borenole at 10.00 m lug inspection pit to 1.20m. No servi		
Date 18/10/2013 19/10/2013		Depth 8.5	i (m) De i0	7.00 7.00	Depth (m)	7.00 8.50 10.00	140 115 105	7.00		140	 Sonic d Rotary Ground mins. 50mm of from 3. 19mm of response 	Ing inspection pit to 1.20m. No servi trilling from 1.20m to 9.00m. coring from 9.00m to 10.00m. dwater encountered at 3.45m rising diameter standpipe installed with sl 00m to 5.00m. diameter piezometer installed with t se zone from 6.50m to 7.50m. ammer id = GS RIG02. Hammer end	to 3.13m after 20 otted response zone tip at 7.00m and	\$
											Release S	itatus: Final		

				Contra	ict Name:	Stoneha	/en FAS			Client:	Abe	deenshire Cou	ncil	Borehole ID	
		STAIN		Contra	ct Number:		Date Started:			Logged	By:	Checked By:		BH1	4
Envir	onmen	tal Sa	nuinen		5414		21/10)/201	3		CLP	n l	ИJВ		
				Eastin	g:		Northing:			Ground	Level:	Plant Used:		Sheet 1 of 2 Scale:	
	bined R namic S						-	637.8	3		8.19	Sonic ri	g	1:25	
-		•										Otrata Dataila		G	roundwate
	Coring In					es & In Situ	<u> </u>		امىرم ا	Depth (m		Strata Details			Backfill & nstallation
TCR	SCR	RQD	FI	Run	i Sarr	nple ID	Test Re	sult	Level (m AOI	Depth (m D) (Thickness		Strata De	•		
-									8.09	0.10		MADE GROUND: A			
-							(S)N=8		7.99	0.20		MADE GROUND: A MADE GROUND: E	· · · · · · · · · · · · · · · · · · ·		
-							(1,1,2,3,2,1)				low cobble content. angular, fine to coa	Gravel is	-	
									7.79	0.40		predominantly fine	o medium of]	
-												subangular or meta	morphic and	-	
-												igneous lithologies. below 0.25m c	lepth, high	ł	
-						30 D1 •1.20 B2				(0.80)		cobble content. Reddish brown slig	ntly gravelly fine		
_					0.00	1.20 82					6 ° 0	to medium SAND v cobble content. Gra	vith medium	1	
_												subangular to subro	ounded, fine to	']	
ŀ						2.30 B3			6.99	1.20	0 6× 7.0	coarse of mixed lith Cobbles are angula	r to subangular	-	
-					1.20) ESB3						of mixed lithologies below 0.70m of arrough	lepth, very		
-												gravelly. at 0.80m deptl			
											XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	concrete extends 0.50m from kerb	line.	ļ	
-										(1.10)		below 1.00m o gravelly.	lepth, slightly	-	
-										(1.10)		Light orangish brow fine to coarse SAN			
-					0.00	0.45 0.4						cobble content. Gra	vel is	-	
-					2.00-	2.45 D4	(S)N=47 (15,10,13,1	3,10			lix × × x × × ×	subangular to subro coarse of sandston	e, quartz and	2-	
-							,11)	- / -				mixed lithologies. C subangular to subro		-	
-									5.89	2.30	×.~×	lithologies. Stiff orangish red sl	ightly sandy		
-						40 D5 ·3.00 B6						slightly gravelly CL angular to subround	AY. Gravel is	-	
					2.10	0.00 20						coarse of sandston		-	
-										(0.70)	EEE	mixed lithologies. below 2.50m of		-	
-												frequent fine to c sized pockets of	fine to coarse	-	
-											E	greenish grey sa	nd.	-	
						3.45 D7 3.40 B8	(S)50/150n (9,15,19,31		5.19	3.00		Orangish brown mc grey slightly gravell			
-							(0,10,10,01			(0.40)		Gravel is subangula fine to coarse of sa	ar to subrounded,	-	
-												quartz.	nostone and	-	
-									4.79	3.40		Stiff dark brown and			
						3.75 D10 50 D9				(0.35)		sandy gravelly CLA subangular to subro	ounded, fine to	-	
-												coarse of sandston mixed lithologies.	e, quartz and	_	
-					3.75-	4.30 B11			4.44	3.75		Light pinkish brown			
												greenish grey claye SAND.	y nne to coarse	-	
							(C)50/4mm (25,50)	ו ו				below 4.00m o orangish brown.	lepth, dark	4-	
-												orangion brown.		-	
ŀ					4.3	0 D12				14.00				-	
										(1.25)				-	
														-	
		1		4.80	4.8	0 D13	(C)50/34m	m				at 4.80m deptl	n. sandstone	-	
							(25,50)					Continued next s		-	
Bo	oring Proc	aress & W	/ater Oh	servatio	ons	Borehole	Diameter	Cas	ina Di	ameter	Remarks				
Date	Time	Boreh Depth	nole (Casing epth (m)	Water Depth (m)	Depth (m)	Diameter (mm)	Depth (Diameter (mm)	1. Hand	dug inspection pit to drilling from 1.20m to		ices encountered.	
						5.00 7.50	140 115	6.0	0	140	3. Boreh 5. Boreh	ole complete at 7.50 ole backfilled with be ammer id = GS RIG	m depth, upon o ntonite upon co	ompletion.	ion.
											Release	Status: Final			
	-	_													

	Ľ	STAIN		Contrac	t Name:	Stonehav	ven FAS			Client:	Abe	rdeer	nshire Council	Borehole ID	
Enviro			rvices		t Number: 5414		Date Started: 21/1()/20 ⁻	13	Logged I	^{3y:} CLP		Checked By: MJB	BH Sheet 2 of 2	14
Com	bined F	Rotary (Cored	Easting	: 387020		Northing: 785	637.	8	Ground I	_evel: 8.19		Plant Used: Sonic rig	Scale:	25
-	Coring In		-			es & In Situ			-				Strata Details		Groundwate
TCR	SCR	RQD	FI	Run		nple ID	Test Re	sult	Level (m AOD	Depth (m (Thickness	Legend	Ť	Strata Description		Backfill & Installation
- 46	29	21	AZCL						3.19	5.00		Cob C C C C C C C C C C C C C C C C C C	maining Detail : 4.80m - 4.80m : bble - possible bedrock. Detail 4.80m - 5.45m : betweer 4.80m and 5.45m depth, assessed zone of core loss. dium strong to strong light grey arse grained SANDSTONE.)	
-			NI 7	6.00		5.87 C14 6.17 C15				(2.50)		me smi	continuities are closely to dium spaced horizontal planar ooth clean. between 5.45m and 5.65m lepth, recovered non-intact as angular fine to coarse gravel. between 5.65m and 6.85m lepth, occasional 45 degree nclined discontinuities.	6-	
-			NI									: c	between 6.38m and 6.62m depth, recovered non-intact as angular fine to coarse gravel.		
_ 100 	85	80 .	NI	•	7.00-	7.50 C16						: c	between 6.72m and 6.82m lepth, recovered non-intact as angular fine to coarse gravel.	7 -	
-			3									•			
-									0.69	7.50		En	d of Borehole at 7.50 m		
-														8-	
-															
-														9-	
-															
-															
	oring Pro	Borel	nole C	Casing	Water	Borehole Depth (m)	Diameter Diameter (mm)		sing Dia (m) Di	meter ameter (mm)	Remarks	dug in:	spection pit to 1.20m. No ser	vices encounte	red.
Date	Time	Depth	<u>((m)</u> De	epth (m)	Depth (m)	5.00 7.50	140 115	-	00	140	 Sonic Borel Borel 	c drilling hole cor hole bac	prom 1.20m to 7.50m. nplete at 7.50m depth, upon ckfilled with bentonite upon c r id = GS RIG02. Hammer er	engineer's inst ompletion.	ruction.
											Release	Status:	: Final		

Listing Description Description Brits Environmental Services 5414 24/10/2013 Curp IIII The Multi-Services Services Ser					Contrac	ct Name:	Stoneha	/en FAS			Client:	Aber	deensh	ire Council	Borehole ID	
Elimited Relatives Testing Testing Consistent of Constraints Section			STAIN		Contrac	ct Number:		Date Started:			Logged	By:		Checked By:	B⊢	115
Combined Reary Coreg Parking Noming Construint Service 10g Said 125 Coreg Informatio Samples & In Still Folding Samples & In Still Folding Status Databilis Filler Status Databilis Filler Status Databilis Filler Status Databilis Filler Filler Status Databilis Filler Filler Status Databilis Filler Filler Filler Filler Status Databilis Filler	Enviro	nmon	tal Sar	vicos		5414		24/10)/20 [.]	13				MJB		
B. Dynamic Sampler Log 387/056.2 786501.1 8.08 Dollin Fig 1.25 Count in Information Samples & h Site Testing State Data/s State Data/s State State Data/s State Data/s<					Easting	I:		Northing:			Ground	Level:		Plant Used:		
County Information Bamples & In Stan Testing Stanta Description Stanta Description TOR SCR RCD FI Run Samples & In Stan Testing Lagran Stanta Description Mode GRADUA Report Image: Stanta Description Run Samples & In Stan Testing Total Report Stanta Description Mode GRADUA Report Image: Stanta Description Run Testing Run Testing Run Testing Run Testing Mode GRADUA Report Image: Stanta Description Run Testing Run Testing Run Testing Run Testing Run Testing Run Testing Image: Stanta Description Run Testing						387056	.2	7850	631.	1		8.08		Sonic rig	1::	25
TCR BCR RQD FI Run Sample ID Test Result Linear Presentation Mode Genous Construction 100 0.00 1.00 7.38 0.10 MODE Genous Construction MODE Genous Construction 1100 0.80 D1 0.80 D1 1.00 L 05 D0 1.00 MODE Genous Construction Mode Genous Construction 1100 0.80 D1 0.80 D1 0.80 D1 1.00 L 05 D0 1.00 D1 0.80 D1 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td>Sampl</td><td>es & In Situ</td><td>1 Testing</td><td></td><td></td><td></td><td></td><td>Stra</td><td>ta Details</td><td></td><td>Groundwate</td></td<>	-					Sampl	es & In Situ	1 Testing					Stra	ta Details		Groundwate
Image: Source Program Provide P				FI	Run			<u> </u>	cult	Leve	Depth (n		Olla			Backfill & Installation
Comp Comp <th< td=""><td></td><td>OOIX</td><td>RQD</td><td></td><td>Tturi</td><td>Can</td><td></td><td>103110</td><td>Suit</td><td>(m AO</td><td>D) (Thicknes)</td><td></td><td></td><td>•</td><td></td><td>- 191 (A)</td></th<>		OOIX	RQD		Tturi	Can		103110	Suit	(m AO	D) (Thicknes)			•		- 191 (A)
1 1 3.40 D9 3.50-4.00 B10 Fim becoming stift or anglish brown stifty sandy gravely liss ubangular to subrounded line to subrounded						0.80- 1.20- 1.20- 1.50- 1.5 2.00- 2.00- 2.00- 2.00- 2.00-	1.00 B2 1.65 D3 1.50 B4 0 EW 3.00 B5 0 EW 2.45 D6 0 ESD6 3.45 D7	(1,1,2,5,8) (S)N=14 (2,4,2,3,5,4 (S)N=31		6.98 6.88	(1.00) 1.10 (0.30) 1.50 (1.80)		MADE (very gra with low angular coarse tarmaca subang lithologi at 0.20r step, at kerbil Appro Brown s coarse i to well r mixed li Medium gravelly low cob subang coarse i subang sandstc at	GROUND. Brown and black welly fine to medium sand cobble content. Gravel is to subrounded fine to of mixed lithologies and udam. Cobbles are ular to subrounded of mixed es. 0.10m depth, extending n from kerbline, concrete 500mm thick. 0.47m depth, 0.30m from ne, concrete step. xximately 130mm thick. lightly gravelly fine to SAND. Gravel is subangular ounded fine to coarse of thologies. redense orangish red and oured fine to coarse SAND. redense dark brown clayey fine to coarse SAND with ble content. Gravel is ular to subrounded fine to of quartz, sandstone and thologies. Cobbles are ular to subrounded of ne. 1.50m depth, moisture noted	2-	
from 2.00m to 3.50m. 6. SPT hammer id = GS RIG02. Hammer energy ratio =39%	Date 23/10/2013 24/10/2013	Time 3 1400 3 1800	Boreh Depth 1.20 5.00	ole C (m) De)	asing pth (m) - 5.00	3.50-4 4.00-4 4.00-4 4.50-1 4.50-1 ns Water Depth (m)	4.00 B10 4.45 D11 4.50 B12 5.00 B13 Borehole Depth (m) 5.00	(2,7,11,15,) Diameter Diameter (mm) 140	Cas Depth	sing D (m)	4.70 ameter	 Hand of Sonic Rotary Ground 20 mir 	Very de light gr gravelly Contin dug inspec drilling fro corng fro dwater en s.	nse reddish brown mottled eenish grey slightly clayey fine to coarse SAND. Grave ued next sheet clayed	4- 4- vices encounte	m after
Kelease Status: Final												from 2 6. SPT h	2.00m to 3. ammer id	50m. = GS RIG02. Hammer er		

	C	STAIN		Contrac		Stoneha	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
Enviro			rvices		t Number: 5414		Date Started: 24/10)/20 ⁻	13	Logged E	^{By:} CLP	Checked By: MJB	BH Sheet 2 of 3	15
Comb	pined R	Rotary (Sample	Cored	Easting	387056		Northing: 7850	631.	1	Ground L	evel: 8.08		Scale: 1:2	25
-		formation	-		Samp	es & In Situ	u Testing					Strata Details		Groundwater Backfill &
TCR	SCR	RQD	FI	Run	San	nple ID	Test Re	sult	Leve (m AO	Depth (m D) (Thickness	Legend	Strata Description		Backfill & Installation
77	37	13	NI	5.00	5.00-	5.45 D14	(S)50/125n (8,13,23,27			(1.25)		is subangular fine to coarse of sandstone.	-	
			5		6.10	-6.30 C			2.13	5.95		Weak red brown coarse grained SANDSTONE. Discontinuities are closely spaced 45 degree inclined open clean.	6- - - -	
- - - - - - - - -	13	13	NI	6.50						(1.42)		between 6.50m and 6.80m depth, recovered as slightly gravelly clayey fine to coarse sand. Gravel is angular fine to coarse of sandstone. between 6.80m and 7.37m depth, recovered non intact as claybound sandy angular to subangular fine to coarse gravel of sandstone.	- - - 7- - -	
-			6	7.50		-7.50 C -7.77 C			0.71	7.37		Weak red brown fine grained SANDSTONE. Discontinuities are closely to medium spaced 45 degree inclined open clean.	- - -	
- - - - - - - -	31	31	NI	9.00								 betwen 7.77m and 7.90m depth, recovered non-intact as angular fine to coarse gravel of sandstone. between 7.90m and 8.10m depth, recovered non-intact as clayey gravelly fine to coarse sand. between 8.10m and 8.45m depth, 1no. vertical fracture undulating clay lined. between 8.45m and 9.40m depth, recovered non-intact as very gravelly sand. 	- -8 - - - - - - - - - - - - - - - - -	
- - - - - - - -	0	0		3.00						(3.93)		between 9.40m and 10.16m depth, recovered non-intact as slightly sandy clayey angular fine to coarse gravel. Continued next sheet	9 - - - - - - - - - - -	
	ring Dro		L			Borohol-	Diamotor			iometer	Pomorlic	Continuou HEAL SHEEL		
Date 23/10/201: 24/10/201: 25/10/201:	Time 3 1400 3 1800) 5.0	nole C (m) De 0	servation Casing opth (m) - 5.00 5.00	Mater Depth (m) - 3.50	Borehole Depth (m) 5.00 13.60	Diameter Diameter (mm) 140 105	Cas Depth 5.0	(m)	iameter Diameter (mm) 140	 Sonic of 3. Rotary Ground 20 min 50mm from 2 	dug inspection pit to 1.20m. No servic drilling from 1.20m to 5.00m. coring from 5.00m to 13.60m. dwater encountered at 2.00m depth, r s. diameter standpipe installed with slo .00m to 3.50m. ammer id = GS RIG02. Hammer ener	ising to 1.44r tted response	n after e zone
											Release S	Status: Final		

	P			Contrac	t Name:	Stonehav	/en FAS			Clie	ent:	Abe	rdeens	hire Council	Borehole ID	
Envir		STAIN	nuiaaa		t Number: 5414		Date Started: 24/1()/20	13	Log	ged B	y: CLP		Checked By: MJB	BH	15
	onmen bined R			Easting	:		Northing:			Gro	ound Le	evel:		Plant Used:	Sheet 3 of 3 Scale:	
	namic S				387056	5.2	785	631.	1			8.08		Sonic rig	1:2	25
	Coring In	formation			Sampl	es & In Situ	u Testing						Str	ata Details		Groundwater Backfill & Installation
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Leve (m AO	el Dep D) (Thi	oth (m) ckness)	Legend		Strata Description		Installation
-				10.00									SAND	red brown fine grained DSTONE. Discontinuities are y to medium spaced 45 e inclined open clean.	-	
-		-	NI									· · · · · · · ·		between 10.26m and 10.36m oth, recovered non-intact as		
		-	NI		10 50	40.00.0						· · · · · · · · ·	slig to c	htly sandy clayey angular fine coarse gravel.		
100	52	18			10.53	-10.63 C							dep	between 10.44m and 10.53m oth, recovered non-intact as htly sandy clayey angular fine coarse gravel.	-	
-		-										· · · · · · · ·	t	between 10.78m and 11.10m oth, recovered non-intact as	-	
Ĺ												· · · · · · · · ·	slig	htly sandy clayey angular fine coarse gravel.	- 11 -	
-			NI		11.10	-11.30 C						· · · · · · · · · · · · · · · · · · ·		coarse graver.		
-													•		-	
				11.30					-3.2	2 1'	1.30	· · · · · · · ·	Mediu	Im-strong and strong red brown		
													Disco	rained SANDSTONE. ntinuities are closely to	-	
╟╴													to und	um spaced horizontal stepped dulating closed clean.	-	
					11.75	-11.91 C							dep	between 11.30m and 11.70m oth, 1 no. vertical fracture ooth closed.		
100	100	89											SIN	ooth closed.		
-												· · · · · · · · · · · · · · · · · · ·	• • •		12-	
-					12.15	-12.40 C						· · · · · · · · ·			-	
						12110 0						· · · · · · · · ·				
			5	12.40								· · · · · · · · ·			-	
-										(2	.30)				-	
-					12.60	-12.81 C							• • •			
												· · · · · · · · ·	•		-	
												· · · · · · · · ·		between 12.80 and 13.00m oth, discontinuities are at 45	-	
- 100	83	77			13.00	-13.36 C								grees.	13 -	
-												· · · · · · · ·				
												· · · · · · · ·			-	
-		-												petween 13.40m and 13.60m	-	
			NI										dep	oth, recovered non-intact as gular fine to medium gravel.	-	
									-5.52	2 13	3.60			of Borehole at 13.60 m		
															-	
															-	
															14 -	
															-	
															-	
															-	
lt															-	
															-	
-															-	
															-	
	oring Proc	aress & M	/ater Oh	servatio	าร	Borehole	Diameter	Ca	sina D	liamete	er	Remarks	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			
Date	Time	Boreh Depth	nole C	Casing epth (m)	Water Depth (m)	Depth (m)	Diameter (mm)	Depth		Diamete	r (mm)	1. Hand	dug insp	ection pit to 1.20m. No serv	ices encounter	ed.
23/10/201 24/10/201 25/10/201	3 1400 3 1800	1.2	0	- 5.00 5.00	3.50	5.00 13.60	140 105	5.	00	14	0	 Rotary Grour 20 mi 50mm from 2 	y coring findwater e ins. n diamete 2.00m to	rom 1.20m to 5.00m. rom 5.00m to 13.60m. incountered at 2.00m depth or standpipe installed with s 3.50m. d = GS RIG02. Hammer en	lotted response	zone
											┝	Polococ	Statuc	Final		
L												Release	Status:	Final		

				Contrac	ct Name:	Stonehav	/en FAS			Client:	Aber	deenshire Council	Borehole ID
	G	STAIN		Contrac	t Number:		Date Started:			Logged E		Checked By:	BH17
Enviro	onmen	tal Ser	vices		5414		21/10)/20 ⁻	13		CLP	MJB	Sheet 1 of 1
	bined R namic S			Easting	: 387201		Northing: 7856	685.9	9	Ground L	-evel: 6.41	Plant Used: Sonic rig	Scale: 1:25
	Coring Inf	ormation			Sampl	es & In Situ	u Testing					Strata Details	Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Res	sult	Level (m AOD	Depth (m) (Thickness	Legend	Strata Description	Installation
TCR	SCR	RQD	FI	Run	0.2 0.30- 0.50- 1.20- 1.20- 1.20- 2.00- 2.00- 2.00- 2.50-4 3.00-5	20 D1 0.50 B2 1.00 B3 1.65 D4 1.55 B5 30 D6 2.00 B7 2.45 D8 2.50 B9 4.00 B10 3.45 D11 4.45 D12 5.00 B13	(S)N=22 (2,2,2,1,6,13) (S)S0/160m (16,9,22,23) (S)N=28 (3,4,5,8,7,8)	3) 10,1 ,5)	Level (m AOD 5.41 4.86 4.41 3.91 2.41) Depth (m) (1.00) (1.00) (0.55) (0.45) (0.45) (0.50) (0.50) (0.50) (0.50) (1.50) (1.50) (1.50)		Strata Description Probable MADE GROUND: Dark brown clayey gravelly fine to medium cobble content. Gravel is subangular to subrounded, fine to coarse of sandstone and mixed lithologies. Cobbles are angular to subrangular of sandstone (dressed stone) (Possible Made Ground). Soft dark orangish brown sandy gravelly CLAY. Gravel is subangular to subrounded, fine to carse of sandstone amd mixed lithologies. (Possible Made Ground). Light yellowish brown gravelly fine to coarse of sandstone and mixed lithologies. (Possible Made Ground). Light yellowish brown gravelly fine to coarse of sandstone and mixed lithologies. Dense dark brown clayey gravelly SAND. gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed litholiges. Very dense orangish brown mottled light yellowish brown gravelly SAND. gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies. Very dense orangish brown mottled light yellowish brown gravelly SAND with low cobble content. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies. Wery dense orangish brown mottled light vellowish brown gravelly SAND with low cobble content. Gravel is subangular to subrounded or sandstone, quartz and mixed lithologies. Wery dense orangish brown wortled response of sandstone, quartz and mixed lithologies. Werdium-dense orangish brown very silty fine to medium SAND. Medium-dense orangish brown very silty fine to medium SAND.	
μ											× × × × × ×	End of Dorahala at 5 00 m	
Bo	oring Prog	ress & W Boreh		servatio	ns Water		Diameter		sing Dia		Remarks:		
Date	Time	Depth	(m) De	pth (m)	Depth (m)	Depth (m) 4.00 5.00	Diameter (mm) 140 115	4.C		iameter (mm)	 Sonic of Boreho No gro Boreho 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 5.00m. ole complete at 5.00m upon schedi undwater encountered during drilli ole backfilled with bentonite upon c ammer id = GS RIG02. Hammer ei	uled depth. ng. ompletion.
											Release S	Status: Final	

Image: Structure Struchaven FAS Aberdeenshire Council BH Environmental Services Farring Structure Capability CLP MJB Base Structure					Contrac	ct Name:	topobo				Client:	Abor	doonshiro Council	Borehole ID	
Environmental Services 5414 21/10/2013 CLP MUB Burn of the construct		C	STAIN		Contro						Loggod			RH	18
Combined Rolary Correll Earling Non-mail Gaunal Land South	Enviro	onmen	ital Sei	rvices					0/201	13	Logged				10
Coring Information Samples & In Biul Tosting Stratu Database TCR BCR RCD FI Run Samples & In Biul Tosting Logge Stratu Description TCR BCR RCD FI Run Samples & In Biul Tosting Logge Stratu Description TCR BCR RCD FI Run Samples & In Biul Tosting Logge Charles Stratu Description TCR BCR RCD FI Run Samples & In Biul Tosting Logge Charles Stratu Description TCR SCR RCD FI Run Stratu Description Data Execution Stratup Strat	Comb	ined R	Rotary C	Cored	Easting			-	733.0	6	Ground				5
TCR SCR ROD FI Run Sample ID Test Report Logical Indexemity (a) (a) (a) (a) (a) (a) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	-		•	-		Sampl	es & In Situ	u Testing					Strata Details	I	Groundwate
Image: Second		-			Run	-		-	sult		Depth (m	Legend			Backfill & Installation
L Loub D1 Loub	-					0.00-	0.40 B2						Dark brown clayey gravelly fine to medium SAND with low cobble		
Image: Second	-									2.85			Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of	-	
1.20 EBSS 1.20-2.00 BS (1.12,1,7,18) (1.12,1,7,18) 1.25 2.00 1.85 EW 2.00-3.00 B7 (1.1,0,0,1) 1.25 2.00 2.00-3.00 B7 (1.1,0,0,1) 1.25 2.00 Soft dark troumsh grey slightly sandy organic SLT with frequent corport netter with slight organic matter is rea.	-							(5)N=28			(1.60)		medium-dense dark orangish brown mottled multicoloured slightly silty gravelly SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of mixed lithologies. Cobbles are subangular		
2.00 ESD6 2.00 3.00 B7 (11,0,0,0,1) Soft dark blows in give signify sandy organic SLT with Inpartie order and the line laders 3.00 3.45 D8 (S)N=2 (0,1,1,0,0) (1,0) (1,0) 3.00 3.45 D8 (S)N=2 (0,1,1,0,0) (1,0) 3.00 3.45 D8 (S)N=2 (0,1,1,0,0) (1,0) 3.00 4.00 B10 -0.05 3.00 3.30 4.00 B10 -0.05 3.30 4.00 4.45 D11 (S)N=30 (1,6,10,3,7,4) -1.25 4.00 4.50 B13 -1.25 4.50 Boring Progress & Water Observations Borehole Diameter Casing Diameter minimum Boring Progress & Water Observations Borehole Diameter Casing Diameter minimum Date Time Event the press encounter of the top	-					1.20 1.20-) ESB5 2.00 B5		8)		(- - - - - - -	
Image: Signed State Image: Signed St	-					2.00) ESD6)	1.25	2.00	× × × × × × × × × × × × × × × × × × ×	sandy organic SILT with frequent organic matter with a slight organic odour and thin laminations of fine to medium grey sand. at 2.00m depth, moisture noted		
1 3.30-4.00 B10 -0.05 3.30 1 4.00-4.45 D11 (S)N=30 4.00-4.45 D11 (S)N=30 4.00-4.50 B12 (1.6,10,9,7,4) 4.50-5.00 B13 -1.25 4.50 0 -1.25 4.50 0 -1.25 4.50 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 -1.25 0 -1.25 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>))</td> <td></td> <td>(1.30)</td> <td>X X X X X X X X X X X X X X</td> <td></td> <td>- - - 3- - - -</td> <td></td>	-))		(1.30)	X X X X X X X X X X X X X X		- - - 3- - - -	
August	-					3.30-4	4.00 B10			-0.05	3.30		gravelly fine to coarse SAND. Gravel is subangular to subrounded fine		
Boring Progress & Water Observations Borehole Diameter Casing Diameter (mm) Casing Diameter (mm) Di	-							(S)N=30 (1,6,10,9,7,	,4)		(1.20)			4	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Casing Depth (m) Depth (m) Depth (m) Diameter (mm) Diameter (mm) 1. Hand dug inspection pit to 1.20m. No services encounterer 2 Sonic drilling from 1.20m to 5.00m. 3. Borehole complete at 5.00m upon scheduled depth. 4.00 140 4.00 140 3. Borehole complete at 5.00m upon scheduled depth. 4 5.00 115 4.00 140 5.00 140 5.00 5.00mins. 5 50mm diameter standpipe installed with slotted response from 3.50m to 4.50m. 5.00mins. 5.00mins. 5.00mins.	-					4.50-	5.00 B13			-1.25			clayey very sandy GRAVEL with low to medium cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. cobbles are	V -	
Date Borehole Depth (m) Casing Depth (m) Water Depth (m) Depth (m) Diameter (mm) Diameter (mm) I. Hand dug inspection pit to 1.20m. No services encounterer 2 Sonic drilling from 1.20m to 5.00m. 4.00 140 3. Borehole complete at 5.00m upon scheduled depth. 3. Borehole complete at 5.00m upon scheduled depth. 4.00 115 4.00 140 5.00m upon scheduled depth. 5.00m upon scheduled de						<u> </u>		<u> </u>							
from 3.50m to 4.50m.			Boreh	ole C	asing	Water	Depth (m)	Diameter (mm) 140	Depth	(m) [iameter (mm)	 Hand of Sonic of Boreho Ground Ground Omin 	dug inspection pit to 1.20m. No sen drilling from 1.20m to 5.00m. ole complete at 5.00m upon schedu dwater encountered at 4.00m depth Is.	lled depth. I, rising to 3.25m	n after
Release Status: Final												from 3 6. SPT ha	.50m to 4.50m. ammer id = GS RIG02. Hammer en		

CESTAIN		SUTETIAN	ven FAS			Aber	deenshire Council		
	Contract N		Date Started:		Logged E		Checked By:	BH	18
Environmental Service		5414	21/10/2	2013		CLP	MJB	Sheet 1+ of 1	
Combined Rotary Core & Dynamic Sampler Lo		87240.4	Northing: 78573	3.6	Ground L	.evel: 3.25	Plant Used: Sonic rig	Scale: 1:2	25
Coring Information		Samples & In Site	u Testing				Strata Details		Groundwater Backfill & Installation
TCR SCR RQD FI	Run	Sample ID	Test Resul	t Level (m AO	Depth (m) D) (Thickness	Legend	Strata Description		Installation
				-1.75			subangular to subrounded of sandstone, quartz and mixed lithologies. End of Borehole at 5.00 m	- - - - - - - - - - - - - - - - - - -	
								- - - - - - - - - - - - - - - - - - -	
Boring Progress & Water (hservations	Borahelo	Diameter	Casing Di	ameter	Remarks		- 9 - - - - - - - - - - - - - - - - - -	
Borehole	Casing	Water Depth (m)				1. Hand	dug inspection pit to 1.20m. No ser	vices encounter	ed.
Date Time Depth (m)	Jepth (m) D	Depth (m) Expanding 4.00 5.00	140 115	4.00	140	 Sonic Boreho Groun 20 mir 50mm from 3 SPT h 	drilling from 1.20m to 5.00m. ole complete at 5.00m upon schedu dwater encountered at 4.00m depth	uled depth. n, rising to 3.25r slotted response	n after e zone

				Contrac	ct Name:	Stoneha	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
	G	STAIN		Contrac	t Number:		Date Started:			Logged	By:	Checked By:	BH	19
Envir	onmen	tal Sei	vices		5414		31/10)/20 [,]	13		CLP	MJB	Sheet 1 of 1	
Com	oined R	otary C Sample	Cored	Easting	: 387282		Northing: 785	748.	0	Ground	Level: 4.75	Plant Used: Sonic rig	Scale: 1:2	25
	Coring In	formation			Sampl	es & In Situ	u Testing			_		Strata Details		Groundwater Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Leve (m AO	Depth (m D) (Thickness	Legend	Strata Description		Installation
				- Team	0.2 0.30- 0.80- 1.20- 1.20- 1.20- 1.20- 1.20- 1.90 2.00-	20 D1 0.50 B2 1.20 B3 1.65 D4 2.00 B5 0 W15 EWW15 2.45 D6 2.80 B8	(S)N=18 (4,4,4,5,6,3) (S)N=12 (4,4,4,4,2,2)	3)	<u>(m AO</u>	(0.30)		Dark brown slightly clayey gravelly fine to medium SAND with low cobble content and with frequent rootlets and roots. Dark orangish brown slightly clayey gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.	- - - - - - - - - - - - - - - - - - -	
-					2.80- 2.80	50 W7 3.00 D9) ESD9 3.45 D10	(S)N=6		1.95		30 30 30 30 40 40 40 40 40 40 40 40 40 4	Plastic blackish brown slightly sandy clayey amorphous PEAT.	- - - - - - - - - - - 	
-					3.00-4	4.00 B11	(1,2,1,1,1,3	3)		(1.00)		Loose black slightly clayey fine to coarse SAND.	-	
-						4.45 D12 4.80 B13	(S)N=34 (6,6,7,9,9,9	9)	0.75	4.00		Dense dark brown mottled multicolours slightly clayey gravelly fine to coarse SAND.		
-					4.80-	5.00 B14			-0.05	4.80		Firm becoming stiff reddish brown		
			lator Ob	con offic		Borohol-	Diamotor			ametar	Boncris	Continued next sheet		
Date	Time	gress & W Boreh Depth		servatio casing pth (m)	NS Water Depth (m)	Borehole Depth (m) 4.00 5.00	Diameter Diameter (mm) 140 115		(m) I	ameter Diameter (mm) 140	 Sonic Boreho Groun Groun Soreho 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 5.00m. ole complete at 5.00m upon schedu dwater encountered at 3.00m depth	uled depth. n, rising to 2.00r ompletion.	n after
											Release S	Status: Final		

CESTAIN	Contract Name:	Stonehaven FAS		Client:	Abero	deenshire Council	Borehole ID	
Environmental Services	Contract Number: 5414	Date Started: 31/1	0/2013	Logged B	^{y:} CLP	Checked By: MJB	BH Sheet 1+ of 1	19
Combined Rotary Cored & Dynamic Sampler Log	Easting: 387282	Northing:	5748.0	Ground L	evel: 4.75	Plant Used: Sonic rig	Scale: 1:2	25
Coring Information	Sample	es & In Situ Testing				Strata Details		Groundwater
TCR SCR RQD FI		nple ID Test R	esult Level	Depth (m)	Legend	Strata Description		Groundwater Backfill & Installation
TCR SCR RQD FI - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -		-	esult Level (m AOD -0.25	Depth (m) (Thickness) 5.00	Legend	Strata Description slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. End of Borehole at 5.00 m		Installation
							- - -	
Boring Progress & Water Ob Borehole		Borehole Diameter Depth (m) Diameter (mm	Casing Dia		Remarks:	lug inspection pit to 1.20m. No serv	ices encountor	red
Date Time Borehole C Depth (m) De	asing Water pth (m) Depth (m)	4.00 140 5.00 115	4.00	140	 Sonic d Boreho Ground Ground 20 min: Boreho SPT ha 	Irilling from 1.20m to 5.00m. le complete at 5.00m upon schedu Iwater encountered at 3.00m depth	lled depth. , rising to 2.00r	n after

	Contract Name:	Stoneha	ven FAS		Client:	Abero	deenshire Council	Borehole ID
CESTAIN	Contract Number:		Date Started:		Logged I		Checked By:	BH20
Environmental Service	541/	1	23/10/2	013		CLP	MJB	
	E a a tha a		Northing:		Ground	Level:	Plant Used:	Sheet 1 of 2 Scale:
Combined Rotary Core & Dynamic Sampler Lo		8.9	78561	0.4		8.39	Sonic rig	1:25
Coring Information	Samp	oles & In Situ	u Testing				Strata Details	Groundwate Backfill & Installation
TCR SCR RQD FI	Run Sa	mple ID	Test Result	Level (m AOI	Depth (m) (Thickness) Legend	Strata Description	Installation
ICK SCK RQD FI - - - - <	0 0.20 0.50 0.90 1.20 1.20 1.20 2.00 2.00 2.00 3.00 3.00 3.00 3.00 3	mple ID .10 D1 0.50 B2 .0-0.90 B3 .0-1.20 B4 .0-1.65 D5 1.65 D5 1.65 B6 65 D7 2.00 B8 2.45 D9 3.00 B10 3.00 B10 3.50 B12 3.50 B12 4.00 B14 4.50 U15 4.50 U15 5.00 B17	(S)N=28 (5,11,10,7,5,6) (S)N=8 (9,10,4,2,1,1) (S)N=35 (8,9,8,8,9,10)	8.19 7.89 7.49) (Thickness 0.20 (0.30) 0.50 (0.40) 0.90 (1.10) 2.00 (1.50) 3.50 (1.70)		Strata Description MADE GROUND. Dark brown slightly clayey gravelly fine to coarse sand with frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. (Topsoil). MADE GROUND. Dark orangish brown gravelly fine to coarse sand with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone. MADE GROUND. Black and reddish brown slightly clayey very sandy gravel with medium cobble content. Gravel is subangular to subrounded fine to coarse of sandstone and quartz. Cobbles are angular to subangular of sandstone. Medium-dense orangish brown slightly gravelly clayey fine to medium SAND with occasional roots and rootlets. from 1.20m depth, slightly clayey gravelly with no roots/rootlets. between 1.65m and 1.80m depth, very clayey. Loose orangish brown occasionaly mottled dark brown silty gravelly fine to coarse SAND with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are rounded of mixed lithologies. at 3.00m depth, moisture noted. between 2.00m and 3.00m depth, poor recovery as cobble pushed through sand. at 3.00m depth, dense.	
							Continued next sheet	
		Borobolo	Diamotor	Caeina Di	ametor	Remarke	Continued Heat Sheet	
Boring Progress & Water (Date Time Borehole Depth (m)	Depth (m)	Depth (m)		Casing Di pth (m) [ameter Diameter (mm)		ug inspection pit to 1.20m. No serv	ices encountered.
		5.00 10.00	140 115	5.00	140	 Rotary Ground 20 min: Boreho SPT hat 	Irilling from 1.20m to 7.50m. coring from 7.50m to 10.00m. lwater encountered at 3.00m depth s. le backfilled with bentonite on com mmer id = GS RIG02. Hammer en tatus: Final	pletion.

				Contrac	ct Name:	Stonehav	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
		STAIN		Contrac	t Number:		Date Started:			Logged E		Checked By:	BH	20
Enviro	onmen	tal Se	rvices		5414		23/10/	/201	3		CLP	MJB	Sheet 2 of 2	
Comb	bined R	otary (Cored	Easting	: 387078		Northing: 7856	10.4		Ground L	evel: 8.39	Plant Used: Sonic rig	Scale:	25
-	Coring Inf		-		Sampl	es & In Situ	u Testina					Strata Details		Groundwate
TCR	SCR	RQD	FI	Run	· ·	nple ID	Test Resu	ult (Level m AOD)	Depth (m) (Thickness	Legend	Strata Description		Backfill & Installation
-						5.45 D18 5.60 B19	(S)50/176mr (4,10,16,24,7	m 10)	3.19	5.20		Firm and stiff red and orange brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to medium of sandstone, quartz and mixed lithologies.	-	
-					5.60-6	6.00 B20						Very dense orangish brown and greenish grey mottled multicolour slightly clayey slightly gravelly fine to coarse SAND. Gravel is subangular to subrounded fine to medium of sandstone, quartz and mixed lithologies. from 5.60m depth, reddish	- - - -	
-					6.0	6.45 D21 0 D22 6.75 B23	(S)50/115mr (8,17,31,19)					brown and multicoloured. moistur noted. between 6.00m and 6.75m depth, clayey.	e 6 - -	
-					6.75-7	7.30 B24				(2.30)		between 6.75m and 7.20m depth, moisture noted.	- - - - - - - -	
-				7.50		7.50 B25 7.95 D26	(S)50/64mm (25,50)		0.89	7.50			7	
-		-	AZCL 12	1.00		7.93 C27		1	0.00	1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Moderately weak brown coarse grained SANDSTONE. Discontinuities are very closely to closely spaced horizontal to 45 degree inclined stepped clean.	-	
- 83	73	- 50	NI								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	between 7.93m and 8.13m depth, 1no. 45 deg fracture, stepped open and infilled with brown fine to coarse sand.	8 - - -	
-					8.34-8	8.49 C28				(2.50)			- - - -	
-			4	9.00	9.14-{	9.55 C29							- 9 - -	
- - 100 - - -	99	86			9.55-9	9.95 C30							- - - - -	
	= D					Dent	Diamati			h l		End of Borehole at 10.00 m		
Date	Time	ress & W Boreh Depth	nole C	servatio asing pth (m)	NS Water Depth (m)	Borehole Depth (m) 5.00 10.00	Diameter Diameter (mm) I 140 115	Casi Depth (n 5.00		imeter (mm) 140	 Sonic of Rotary Ground Ground Boreho 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 7.50m. coring from 7.50m to 10.00m. dwater encountered at 3.00m dept	n, rising to 2.56r	n after
											Release S	Status: Final		

CUSTAIN	Contract Name: Stoneh	aven FAS	Client: Abero	deenshire Council	Borehole ID
Environmental Services	Contract Number: 5414	Date Started: 30/10/2013	Logged By: CLP	Checked By: MJB	BH21 Sheet 1 of 1
Combined Rotary Cored & Dynamic Sampler Log	Easting: 387076.7	Northing: 785591.3	Ground Level: 8.66	Plant Used: Sonic rig	Scale: 1:25
Coring Information	Samples & In S	Situ Testing		Strata Details	Groundwater Backfill &
TCR SCR RQD FI	Run Sample ID	Test Result (m AOE	Depth (m) (Thickness) Legend	Strata Description	Backfill & Installation
Boring Progress & Water Obs	0.20 D1 0.20-0.50 B2 0.50-1.00 B3	8.06		MADE GROUIND. Grass over dark orangish brown slightly clayey slightly gravelly fine to medium sand with low cobble content and frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz, ceramic pipe fragments and mixed lithologies. Cobbles are subrounded of sandstone and mixed lithologies. MADE GROUIND. Dark brown sandy gravelly clay with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies. at 0.70m depth, plastic sheet (possible membrane). at 0.90m depth, plastic sheet (possible membrane). End of Borehole at 1.10 m	
Boring Progress & Water Obs		Diameter Casing Dia Diameter (mm) Depth (m) D		dug inspection pit to 1.10m depth.	
Date Time Depth (m) Dep	asing Water Depth (m pth (m) Depth (m)	, Diameter (mm) Depth (m) D	2. Boreho backfill 3. Boreho Burn of	Jug inspection pit to 1.10m depth. Je terminated on boulder obstructio led with arisings upon completion. Je BH21A undertaken 2m north to a f Glaslaw. Status: Final	

CESTAIN	Contract Name: Stoneha	ven FAS	Client: Abero	deenshire Council	Borehole ID
Environmental Services	Contract Number: 5414	Date Started: 30/10/2013	Logged By: CLP	Checked By: MJB	BH21A
Combined Rotary Cored & Dynamic Sampler Log	Easting: 387079.9	Northing: 785595.6	Ground Level: 8.30	Plant Used: Sonic rig	Scale: 1:25
Coring Information	Samples & In Sit	u Testing		Strata Details	Groundwate
TCR SCR RQD FI	Run Sample ID		Depth (m) (Thickness) Legend	Strata Description	Groundwate Backfill & Installation
	0.20 D1 0.30-0.50 B2	8.00 7.40		MADE GROUND. Grass over dark orangish brown slightly clayey slightly gravelly fine to medium sand with frequent roots and rootlets. (Topsoil). MADE GROUND. Dark brown slightly gravelly clayey fine to coarse sand. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. — at 0.30m depth, piece of broken paving slab. End of Borehole at 0.90 m	
Boring Progress & Water Ob		Diameter Casing Dia			
Date Time Borehole C Depth (m) De	asing Water Depth (m)	Diameter (mm) Depth (m) Diameter (mm)	2. Boreho backfill 3. BH21B	lug inspection pit to 0.90m depth. le terminated on concrete obstructi ed with arisings upon completion. undertaken 1.5m north and 0.5m w	on at 0.90m depth and vest.

URNAL Description Description <thdescripion< th=""> <thdescription< th=""> <thdes< th=""><th></th><th></th><th></th><th></th><th>Contrac</th><th>t Name:</th><th>Stoneha</th><th>ven FAS</th><th></th><th></th><th>Client:</th><th>Aber</th><th>rdeensł</th><th>nire Council</th><th>Borehole ID</th><th></th></thdes<></thdescription<></thdescripion<>					Contrac	t Name:	Stoneha	ven FAS			Client:	Aber	rdeensł	nire Council	Borehole ID	
El MUNIMIPUICIA Satri Vices Internet Participa Paritipa		G	ISTAIN		Contrac	t Number:		Date Started:			Logged E	By:		Checked By:	BH2	21B
Combined Robuy Cores Parking Native 3807076.6 Parking Sould Read Robin (1) Sould Read Robin (1) Sould Read Robin (1) Robin (1) <throbin (1)<="" th=""> <throbin (1)<="" th=""> Robin (1)<</throbin></throbin>	Enviro	nmer	tal Se	rvices		5414		30/10	/2013	3		CLP		MJB	Shoot 1 of 2	
8. Dynamic Sampler Log 387076.6 745596.1 8.64 2000 mg 1.25 Samples & n Stur Teeting Samples & non-						:		Northing:			Ground L	evel:				
Contig Information Somplex & its Dim. Texting. Source ID Source ID <t< td=""><td></td><td></td><td></td><td></td><td></td><td>387076</td><td>.6</td><td>7855</td><td>596.1</td><td></td><td></td><td>8.64</td><td></td><td>Sonic rig</td><td>1:2</td><td>5</td></t<>						387076	.6	7855	596.1			8.64		Sonic rig	1:2	5
TCR SCR ROD P Run Samue D Test Result ArtWG, Refund Description Mediate control 1 No COUNT Count Count Count Count No Status Description No N	-		· ·	-		Sampl	es & In Situ	u Testina					Stra	ata Details		Groundwater
Image: Second		-			Run				ult ult	Level	Depth (m)	Legend				Installation
L U	1								(11	TAOD)	(Thickness		MADE	•		
L L L L D	-										(0.30)		orangis	sh brown slightly clayey		
L L L L L L Moder-construction for setting and the construction of setting and the constructing and the construe of and the const										8 34	0.30		sand w	ith frequent roots and	-	
Builty Progress & Water Observations Barrier Mark Case 1 (S) N=15 (S) N=16 (S) N=15 (S) N=16 (S) N=	-					0.00	0.00 B2			0.04	0.00		`	· · · ·		
Image: Second	-														e _	
Image: Section and the section of the secti	-					0.60-	1.20 B3						subrou	nded fine to coarse of	-	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>											(0.90)					
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	-														-	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	-														1-	
L L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	-						.				1.00				-	
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>										1.44	1.20		Mediur	n-dense orangish brown		
L L <thl< th=""> <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<></thl<>	-							(1,0, 1,2, 1,0)	, 			م محمد م محمد محمد مد محمد م	to med	ium SAND with low cobble	-	
Image: Second	-												subrou	nded fine to coarse of	-	
Image: Second	-										(0.80)	وسند. محمر مد ف عد م سند محمد	litholog	ies. Cobbles are subangular	-	
Image: Second						1 80-	200 B6					ہ۔ مد ہے۔ مسلح کہ	sandst	one and mixed lithologies.	-	
End End End End End End Medium-dates complet hown and model between a corres (GAVEL of sandstates to the corres (GAVEL of sandstates to																
End End <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>2.00-</td> <td>2.45 D7</td> <td>(S)N=20</td> <td></td> <td>6.64</td> <td>2.00</td> <td></td> <td>Mediur</td> <td>n-dense orangish brown and</td> <td>2-</td> <td></td>	-					2.00-	2.45 D7	(S)N=20		6.64	2.00		Mediur	n-dense orangish brown and	2-	
Image: Section of the section of th	-					2.00-	·3.00 B8	(11,9,6,5,4,5	5)			× × × × × ×	multico	bloured slightly silty very		
1 1												× × × × × ×	coarse	GRAVEL of sandstone,	, J	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Logical information of the cosine of subconded fine to any services encountered. 2 Time Reminity Solo 5.37 5.00 100 100 2012213 1800 5.00 5.37 5.00 140 Diameter (m) Diameter (m) 2012213 1800 5.00 5.37 5.00 140 Solo complete at 10.00 Meght. 2012213 1800 5.00 5.37 5.00 140 Solo complete at 20.00 meght and 20.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 Solo complete at 10.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 Solo Solo complete at 10.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 5.00 140 201221 1800 10.00 5.00 5.37 5.00 140 5.00 140 5.00 10.00 5.00 5.00 140 5.00 140 5.00 201221 1800 10.00 5.00 5.00 140 5.00 140 5.00 10.00 5.00	-											× × × *	quanz		-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Logical information of the cosine of subconded fine to any services encountered. 2 Time Reminity Solo 5.37 5.00 100 100 2012213 1800 5.00 5.37 5.00 140 Diameter (m) Diameter (m) 2012213 1800 5.00 5.37 5.00 140 Solo complete at 10.00 Meght. 2012213 1800 5.00 5.37 5.00 140 Solo complete at 20.00 meght and 20.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 Solo complete at 10.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 Solo Solo complete at 10.00 meght. 2012213 1800 10.00 5.00 6.37 5.00 140 5.00 140 201221 1800 10.00 5.00 5.37 5.00 140 5.00 140 5.00 10.00 5.00 5.00 140 5.00 140 5.00 201221 1800 10.00 5.00 5.00 140 5.00 140 5.00 10.00 5.00	-											× × × ×			-	
Image: Second	-										(1.30)	× × × × × ×			-	
Image: Second												x x x x x x x			-	
Image: Second	-											× × × ×			-	
Image: Solution of the state of the sta	-											× × × ×			3-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Mining form 1.20m. No services encountered. Soft orangish brown slightly gravelly sandy SILT. Gravel is subangular to subconded fine to coarse of sandstone, quart and mixed lithologies. Boring Progress & Water Observations Borehole Diameter Casing Diameter Mining Depth (m) Diameter (m) Remarks: Bate Time Depth (m) Diameter (m) Diameter (m) Diameter (m) Diameter (m) Diameter (m) 30/10/2013 1000 5.00 6.37 10.00 115 5.00 140 30/10/2013 1000 5.00 6.37 10.00 115 5.00 140 Soft orangish brown slightly gravelly class Soft orangish brown slightly gravelly sandy subtravel is subangular to subconded fine to coarse of sandstone, quart and mixed lithologies. Stiff orangish brown slightly gravelly class. Boring Progress & Water Observations Borehole Diameter Casing Diameter (m) Remarks: Date Time Depth (m) Diameter (m) Diameter (m) Diameter (m) 30/10/2013 1895 10.00 5.00 6.37 5.00 140 1. Soft orangish brown slightly gravelly class the ethole Soft o	-					3.00-3	3.30 B10	(5,11,4,7,3,2	2)			× × × × ×			-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Mining form 1.20m. No services encountered. Soft orangish brown slightly gravelly sandy SILT. Gravel is subangular to subconded fine to coarse of sandstone, quart and mixed lithologies. Boring Progress & Water Observations Borehole Diameter Casing Diameter Mining Depth (m) Diameter (m) Remarks: Bate Time Depth (m) Diameter (m) Diameter (m) Diameter (m) Diameter (m) Diameter (m) 30/10/2013 1000 5.00 6.37 10.00 115 5.00 140 30/10/2013 1000 5.00 6.37 10.00 115 5.00 140 Soft orangish brown slightly gravelly class Soft orangish brown slightly gravelly sandy subtravel is subangular to subconded fine to coarse of sandstone, quart and mixed lithologies. Stiff orangish brown slightly gravelly class. Boring Progress & Water Observations Borehole Diameter Casing Diameter (m) Remarks: Date Time Depth (m) Diameter (m) Diameter (m) Diameter (m) 30/10/2013 1895 10.00 5.00 6.37 5.00 140 1. Soft orangish brown slightly gravelly class the ethole Soft o						3 30-4	4.00 B11			5 34	3 30	~ × ×			-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter (mn) Remarks: Date Tme Borehole (m) Depth (m) Depth (m) Demeter (mn) Demeter (mn) 30/10/2013 1805 10.00 5.00 6.97 5.00 140 5.00 140 30/10/2013 1805 10.00 5.00 6.97 5.00 140 5.00 140 Soft orangish brown slightly gravelly sandy silphily gravelly class. Soft orangish brown slightly sandy silphily gravelly class. Soft orangish brown slightly sandy silphily gravelly class. Soft orangish brown slightly sandy silphily gravelly class. 4.24 4.40 4.40 4.50 D14 4.50.50.0 140 4.50 D14 4.50.50.0 Borehole Diameter Casing Diameter Casing Diameter Continued next sheet Date Tme Borehole Diameter (m) Demeter (m) Demeter (m) Demeter (m) Demeter (m) 30/10/2013 1805 10.00 5.00 6.97 5.00 140 5.00 140 5.00 115 5.00 115 5.00 140 5.00 140	-					0.00	4.00 BTT			0.04	0.00	× × × × × × ×	Mediur very si	n-dense light orangish brown lty fine SAND.	-	
August and the second secon	-											× × × × × × × ×			-	
Boring Progress & Water Observations Borehole Diameter (mm) Depth (m)	-										(0.70)	× × × × × × ×			-	
Boring Progress & Water Observations Borehole Diameter (mm) Depth (m)												$\begin{pmatrix} x & x \\ x $			-	
Boring Progress & Water Observations Borehole Diameter (mm) Depth (m)												$\mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} $			-	
Image: Subscription of the state of the	-									4.64	4.00	x × x x X X X X X	Soft or	angish brown slightly gravelly	4 -	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Continued next sheet Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Continued next sheet 0.00 5.00 6.97 5.00 140 30/10/2013 0815 10.00 5.00 6.97 5.00 140 140 Stiff or anglish brown slightly sandy slightly gravely CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Stiff or anglish brown slightly sandy slightly gravely CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Date Time Borehole Diameter Casing Diameter Remarks: 30/10/2013 1800 10.00 5.00 6.97 5.00 140 31/10/2013 0815 10.00 5.00 6.97 5.00 140 3.00 Storehole complete at 10.00m upon specified depth. 5.00 6.97 10.00 115 5.00 140 4.00 Storehole complete at 10.00m upon specified depth. 5.00 5.00 140 5.00 80 6.87 Storehole complete at 10.00m upon specified depth. 5.00 5.00 <						4.00-4	+.40 DIJ	(1,2,2,3,5,5)			(0.40)	$(\times \times $	sandy	SILT. Gravel is subangular to		
A 100 A 100 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(0.40)</td><td>$\overbrace{\times \times \times \times}^{\cong} \times \times$</td><td>sandst</td><td>one, quartz and mixed</td><td>-</td><td></td></td<>											(0.40)	$\overbrace{\times \times \times \times}^{\cong} \times \times$	sandst	one, quartz and mixed	-	
A.50 D14 4.50 D14 5.00 D14 1.00 D12 1.00 D12 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.24</td><td>4.40</td><td>× × × × × × × × × ×</td><td></td><td>·</td><td></td><td></td></td<>										4.24	4.40	× × × × × × × × × ×		·		
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Depth (m) Diameter (mm) Depth (m) Diameter (mm) No 1. Hand dug inspection pit to 1.20m. No services encountered. 2. Sonic drilling from 1.20m to 10.00m depth. 30/10/2013 1800 10.00 5.00 6.97 5.00 140 115 5.00 140 Sone hole complete at 10.00m upon specified depth. 5.00m mins. 4. Borehole complete at 10.00m upon specified depth. 5.00m mins. 4. Borehole complete at 0.00m upon specified depth. 5.00m mins. 6. SPT hammer id = GS RIG02. Hammer energy ratio =39%													slightly	gravelly CLAY. Gravel is	-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Depth (m)						4.50-3	0.00 013						coarse	of sandstone, quartz and	-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Depth (m) Diameter (mm) D													mixed	nunologies.	-	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Depth (m) Diameter (mm) D															-	
Date Borehole Depth (m) Casing Depth (m) Water Depth (m) Depth (m) Diameter (mm) Diameter (m												<u>kossi</u>		iuea next sheet		
Date Inne Depth (m)			Boreh	ole C	Casing	Water				<u> </u>				ction pit to 1.20m. No ser	vices encounter	ed.
31/10/2013 0815 10.00 5.00 6.97 10.00 115 mins. 4. Borehole complete at 10.00m upon specified depth. 5. 50mm diameter standpipe installed upon completion, slotted between 2.00m and 3.50m depth. 6. SPT hammer id = GS RIG02. Hammer energy ratio =39%	30/10/2013	3 1800) 10.0	00	5.00	-		140	5.00		140	2. Sonic	drilling fro	om 1.20m to 10.00m dept	า.	
 5. 50mm diameter standpipe installed upon completion, slotted between 2.00m and 3.50m depth. 6. SPT hammer id = GS RIG02. Hammer energy ratio =39% 	31/10/2013	3 0815	5 10.0	00	5.00	6.97	10.00	115				mins.				
6. SPT hammer id = GS RIG02. Hammer energy ratio =39%												5. 50mm	n diameter	standpipe installed upon	completion, slot	ted
Release Status: Final															nergy ratio =39%	5
Release Status: Final		1														
												Release S	Status:	Final		

	C.	STAIN		Contrac	ct Name:	Stoneha	ven FAS		Client:	Aber	deenshire Council	Borehole ID	
Envir		tal Ser	vices		ct Number: 5414		Date Started: 30/10/2	2013	Logged	By: CLP	Checked By: MJB	BH2	21B
Comb	oined R	totary C Sampler	ored	Easting	387076		Northing: 78559	96.1	Ground	Level: 8.64	Plant Used: Sonic rig	Sheet 2 of 2 Scale: 1:2	25
	Coring Inf	ormation	-		Sampl	es & In Situ	u Testing				Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Resul	t Lev (m A	el Depth (r DD) (Thicknes	m) ss) Legend	Strata Description		Installation
					5.00-6 6.00-6 6.00-6	5.45 D16 6.00 B17 6.45 D18 6.35 B19 7.50 B20	(S)N=44 (2,6,11,10,10, 3) (S)N=44 (2,7,7,10,12,1)	1	(1.95)		Stiff orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Very dense yellowish brown mottled pinkish brown slightly gravelly fine to coarse SAND. Gravel is angular of sandstone.		
					7.50-8	7.95 D21 8.00 B22 9.00 B23	(S)50/122mm (13,12,32,18)		(3.65)		from 7.00m depth, gravelly.	- - - - - - - - - - - - - - - - - - -	
						9.45 D24 0.00 B25	(S)50/104mm (14,11,32,18)				End of Borehole at 10.00 m	- - - - - - - - - - - - - - - - - - -	
		ress & Wa	ole C	Casing	Water	Borehole Depth (m)	-	Casing epth (m)	Diameter Diameter (mm	Remarks:	End of Borehole at 10.00 m dug inspection pit to 1.20m. No serv	vices oncounter	ed
Date 30/10/201: 31/10/201:	Time 3 1800 3 0815	Depth (m) De	5.00 5.00	Depth (m) - 6.97	5.00 10.00	140 115	5.00	140	 Sonic Groun mins. Borehi 50mm betwe SPT h 	dug inspection pit to 1.20m. No service drilling from 1.20m to 10.00m depth dwater encountered at 2.00m rising ole complete at 10.00m upon specif diameter standpipe installed upon en 2.00m and 3.50m depth. ammer id = GS RIG02. Hammer en Status: Final	n. 9 to 1.98m after fied depth. completion, slo	20 tted

				Contra	ct Name:	Stonehay	ven FAS			Client:	Aber	deenshire Council	Borehole ID
	C	STAIN		Contra	ct Number:		Date Started:			Logged		Checked By:	BH22
Enviro	onmen	ital Sei	rvices		5414		31/10	0/201	3	Logged	CLP	MJB	Sheet 1 of 3
		Rotary C Sample		Eastinę	^{9:} 387070		Northing: 785	570.4	1	Ground	Level: 8.82	Plant Used: Sonic rig	Scale: 1:25
		formation	-		Sampl	es & In Situ	u Testing			_		Strata Details	Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Re	sult		Depth (m	Legend	Strata Description	Installation
TCR	SCR	RQD	FI	Run	0.3 0.30- 0.80- 1.20- 2.00- 2.00- 2.00- 2.00- 2.00- 2.00- 3.00- 3.00- 3.00- 3.00- 3.00- 3.00- 3.00-	20 D1 0.50 B2 1.20 B3 2.00 B4 2.00 B4 2.45 D5 0.0 D6 2.80 B7 90 D8 3.45 D9 3.40 B10 4.00 B11	(S)N=13 (0,0,4,4,4,1 (S)N=7 (1,2,1,1,2,3 (S)N=28 (7,10,11,11)	1)	Level (m AOD 8.52 7.62 6.72 6.72 5.72 5.42	 Depth (rr (0.30) 0.30 0.30 (0.90) 1.20 (0.90) 2.10 (0.70) 2.80 (0.30) 3.10 (0.30) 3.40 	Legend Image: state	Strata Description Dark orangish brown slightly clayey gravelly fine to coarse SAND with low cobble content and occasional rootlets and roots. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. (Copsoil). (Possible Made Ground). Light orangish brown slightly clayey gravelly fine to coarse of SAND with low cobble content and frequent gravel sized pockets of soft clay. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subrounded of mixed lithologies. Cobbles are subrounded of mixed lithologies. Soft orangish brown slightly clayey gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Soft orangish brown slightly clayey very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies. Loose orangish brown slightly clayey very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies. Firm reddish brown slightly clayey very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies. Firm reddish brown slightly clayey very sandy subangular to subrounded fine to coarse GRAVEL of sandstone, quartz and mixed lithologies. Firm becoming stiff slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	-
-						0 D13 5.00 B14							
<u> </u>												Continued next sheet	
Bo		gress & W Boreh		servatic Casing	ons Water		Diameter		ing Dia		Remarks:		
Date	Time	Depth	(m) De	ipth (m)	Depth (m)	Depth (m) 5.00 10.00	Diameter (mm) 140 115	Depth (ameter (mm)	 Sonic Boreho Ground Ground 20 min Boreho 	dug inspection pit to 1.20m. No serv drilling from 1.20m to 10.45m. ole complete at 10.45m upon sched dwater encountered at 4.00m depth is. ole backfilled with bentonite upon co ammer id = GS RIG02. Hammer en	uled depth. , rising to 3.23m after ompletion.
											Release S	Status: Final	

				Contrac		Stonehav	/en FAS			Client:	Aber	rdeenshire Council	Borehole ID	
	C	STAIN		Contrac	t Number:		Date Started:			Logged	By:	Checked By:	BH	22
Envir	onmen	tal Ser	vices		5414		31/10)/20 [,]	13		CLP	MJB	Sheet 2 of 3	
		otary C		Easting			Northing:			Ground		Plant Used:	Scale:	
& Dyı	namic S	Sample	r Log	:	387070	.3	785	570.	4		8.82	Sonic rig	1:2	25
	Coring In				Sampl	es & In Situ	u Testing				. 1	Strata Details		Groundwate Backfill & Installation
TCR	SCR	RQD	FI	Run			Test Re		Level (m AOI	Depth (m D) (Thickness		Strata Description		
					5.00-6 6.00-6 6.00-6 6.50-7 7.50-7 7.50-7 8.25-8 8.80-5 8.80-5 8.80-5	5.45 D15 5.00 B16 5.00 B16 7.50 B18 7.50 B19 7.50 B19 7.50 B19 7.50 B19 7.50 B19 7.95 D20 3.25 D20 3.25 B21 3.80 B22 9.20 B24 0 D25 0.00 B26	(S)N=43 (9,11,10,12 2) (S)50/260n (8,7,9,15,1 (8,7,9,15,1) (S)50/252n (4,7,10,15,0) (S)50/256n (10,11,10,1 ,10)	nm 7,9) nm 15,1	-0.38	(5.80)		Firm becoming stiff slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. from 6.00m depth, gravelly with low cobble content of subangular sandstone.		
										/		Continued next sheet		
Во	oring Prog	ress & W					Diameter			ameter	Remarks			
Date	Time	Boreho Depth (ole C (m) De	casing pth (m)	Water Depth (m)	Depth (m) 5.00 10.00	Diameter (mm) 140 115	Depth 5.0		Diameter (mm)	 Sonic Borehi Groun Groun and the second se	ole backfilled with bentonite upon co ammer id = GS RIG02. Hammer en	uled depth. , rising to 3.23r	n after
											Release	Status: Final		

CESTAIN		Stonehaven FAS		Client:		leenshire Council		22
Environmental Services	Contract Number: 5414	Date Starte	≞ 10/2013	Logged E		Checked By: MJB	BH Sheet 3 of 3	22
Combined Rotary Cored & Dynamic Sampler Log	Easting: 387070	Northing: 0.3 78	5570.4	Ground L	.evel: 8.82	Plant Used: Sonic rig	Scale: 1:2	:5
Coring Information	Sample	les & In Situ Testing				Strata Details		Groundwater Backfill & Installation
TCR SCR RQD FI	Run Sam	nple ID Test	Result Level (m AOE	Depth (m) (Thickness	Legend	Strata Description		Installation
ICK SCR RQD FI - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -<		nple ID Test 10.45 D27 (S)50/79 (14,11,4)	mm			Strata Description Very dense light yellowish brown mottled light pinkish brown very sandy angular fine to coarse GRAVEL of sandstone. End of Borehole at 10.45 m		
							-	
		Develop D'						
Boring Progress & Water Ob Date Time Borehole C Depth (m) De	Casing Water Pepth (m) Depth (m)	Borehole Diameter Depth (m) Diameter (m		iameter (mm)	Remarks: 1. Hand d	ug inspection pit to 1.20m. No serv	ices encounter	ed.
	- · · · ·	5.00 140 10.00 115	5.00	140	 Borehol Ground 20 mins Borehol SPT ha 	rilling from 1.20m to 10.45m. le complete at 10.45m upon sched water encountered at 4.00m depth, s. le backfilled with bentonite upon co mmer id = GS RIG02. Hammer en tatus: Final	mpletion.	

				Contrac	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
	L	STAIN	ł	Contrac	ct Number:		Date Started:			Logged E	By:	Checked By:	BH	23
Envir	nmon	tal Ser	vicos		5414		21/10)/20 [,]	13		CLP	MJB	Observed	
		totary C		Easting	I:		Northing:			Ground L	.evel:	Plant Used:	Sheet 1 of 1 Scale:	
		Sample			387072	.5	785	532.	2		9.10	Sonic rig	1:2	
	Coring Inf	formation			Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill & Installation
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult	Level (m AOD)	Depth (m) (Thickness	Legend	Strata Description		Installation
-					0.20-	20 D1 0.50 B2 1.00 B3			8.80	(0.30) 0.30		Grass over dark orangish brown slightly gravelly clayey fine to medium SAND with frequent roots and rootlets (TOPSOIL). Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	-	
-						1.65 D4				(0.95)		Dark orangish brown slightly gravelly silty fine to medium SAND with low cobble cotent. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed litholiges. Cobbles are subangular to subrounded of sandstone, quartz and mixed lithologies.	- - - 1- -	
-					1.20-	.2.40 B5) ESD4	(S)N=28 (2,7,5,8,8,7	7)	7.85	1.25		Medium-dense orangish brown mottled multicoloured slightly silty sandy GRAVEL. Gravel is subangular to subrounded fine to coarse of sanstone, quartz and mixed lithologies.		
-					2.00-	2.45 D6	(S)N=5 (4,1,0,0,2,3	3)					2-	
-						50 D7 -3.00 B8			6.70	2.40 (0.95)	MX MX<	Soft orangish brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to surounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of mixed lithologies. between 2.40m and 2.55m	-	
-						·3.35 B9			5.75	3.35		depth, with thin laminations of silt below 3.00m depth, very sandy		•
-					3.50-3 3.50-3	0 D10 3.95 D11 3.75 B12	(S)N=35 (5,6,7,8,9,1	1)		(0.40)		Dense orangish brown clayey gravelly fine to coarse SAND. Grave is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. below 3.50m depth, very claye	-	
-					4.00-4	4.00 B13 4.45 D14 5.00 B15	(S)N=44 (2,6,8,11,1)	2,13	5.35 5.10	3.75 (0.25) 4.00		Soft orangish brown slightly gravelly sandy SILT. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	, –	
-)	, -		(1.00)		Stiff orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to coarse of mixed lithologies.		
-													-	
Bo	oring Prog	gress & W				Borehole	Diameter	Ca	sing Dia	meter	Remarks:	End of Borehole at 5.00 m		
Date	Time	Boreho Depth	ole C m) De	asing pth (m)	Water Depth (m)	Depth (m) 4.00 5.00	Diameter (mm) 140 115	Depth 4.0		ameter (mm)	 Sonic of Boreho Ground Ground Boreho 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 5.00m. ole complete at 5.00m upon schedi dwater encountered at 3.50m depti is. ole backfilled with bentonite upon c ammer id = GS RIG02. Hammer en	uled depth. h, rising to 3.29m ompletion.	n after
											Release S	Status: Final		

		Contract N		onehav	/en FAS			Client:	Abero	deenshire Council	Borehole ID
C	STAIN	Contract N	Number:		Date Started:			Logged E	By:	Checked By:	BH24
Environment	al Services		5414		26/10/	/2013	3		CLP	MJB	Sheet 1 of 2
Combined R		Easting:			Northing:			Ground L	evel:	Plant Used: 5	Scale:
& Dynamic S		3	87035.5	5	7855	06.5			10.49	Sonic rig	1:25
Coring Info	ormation		Samples	s & In Situ	u Testing					Strata Details	Groundwater Backfill &
TCR SCR	RQD FI	Run	Samp	le ID	Test Resu	ult (r	Level n AOD)	Depth (m) (Thickness	Legend	Strata Description	Installation
ICK SCK - - <td></td> <td>KUN</td> <td>0.20 0.30-0 0.50-1 1.00-1 1.20-1 1.20-1 1.70-2 2.00-2</td> <td>) D1 .50 B2</td> <td>(S)N=21 (16,9,7,6,5,3 (S)N=18 (2,2,3,3,6,6)</td> <td>3)</td> <td><u>n AOD)</u> 10.19 8.49</td> <td>(0.30) 0.30 (1.70) 2.00 (1.00)</td> <td></td> <td>MADE GROUND. Dark orangish brown slightly clayey slightly gravelly fine to coarse sand with frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. (Topsoil). MADE GROUND. Dark brown slightly clayey gravelly fine to coarse sand with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to rounded of sandstone, quartz and mixed lithologies. from 0.60m depth, clayey with medium cobble content and rare wood fragments. from 1.70m depth, very clayey. Medium-dense dark orangish brown silty gravelly fine to coarse SAND. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies.</td> <td></td>		KUN	0.20 0.30-0 0.50-1 1.00-1 1.20-1 1.20-1 1.70-2 2.00-2) D1 .50 B2	(S)N=21 (16,9,7,6,5,3 (S)N=18 (2,2,3,3,6,6)	3)	<u>n AOD)</u> 10.19 8.49	(0.30) 0.30 (1.70) 2.00 (1.00)		MADE GROUND. Dark orangish brown slightly clayey slightly gravelly fine to coarse sand with frequent roots and rootlets. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. (Topsoil). MADE GROUND. Dark brown slightly clayey gravelly fine to coarse sand with low cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to rounded of sandstone, quartz and mixed lithologies. from 0.60m depth, clayey with medium cobble content and rare wood fragments. from 1.70m depth, very clayey. Medium-dense dark orangish brown silty gravelly fine to coarse SAND. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies.	
- - - - -			3.00 3.20-4.1	D10 00 B11	(S)N=2 (1,0,0,0,1,1)		7.49	3.00		Soft thinly laminated reddish brown slightly sandy SILT with occasional thin partings of fine sand.	- - 3- - - - - -
-				50 U12 U12			6.19	(1.30)		 from 3.60m depth, slightly gravelly. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. from 3.90m depth, clayey SILT. 	4-
			4.50-4.9	D13 90 B14 D15						Soft brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone and quartz.	
			7.00	2.0						Continued next sheet	
	ress & Water Ob Borehole	Casing		Borehole Depth (m)	Diameter Diameter (mm)	Casii Depth (m	ng Dian	neter meter (mm)	Remarks:	lug inspection pit to 1.20m. No service	es encountered
Date Time 26/10/2013 1500 28/10/2013 1100	Depth (m) D 6.00		- -	6.00 10.00	140 115	6.00		140	 Sonic d Slight s 2.00m d Ground of shift. Boreho SPT hat 	Irilling from 1.20m to 10.00m. eepage noted at 1.00m depth, moistu depth. Iwater encountered overnight . Sitting	are observed from at 5.60m at start ad depth. etion.

	P	STAIN		Contrac	ct Name:	Stoneha	ven FAS			Client:	Abei	rdeenshire Council	Borehole ID	
Enviro			nvioon		ct Number: 5414		Date Started: 26/10)/2013	3	Logged B	CLP	Checked By: MJB	BH	24
Comb	bined R	Rotary (Sample	Cored	Easting	: 387035		Northing: 785	506.5		Ground L	evel: 10.49	Plant Used: Sonic rig	Sheet 2 of 2 Scale: 1:2	25
-		formation	-		Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Re	sult (m	Level 1 AOE	Depth (m) (Thickness)	Legend	Strata Description		Backfill & Installatior
-					5.00-	5.45 D16 5.50 B17 6.00 B18	(S)50/258n (5,7,9,14,1					Remaining Detail : 4.90m - 4. from 4.90m depth, very sar from 5.10m depth, slight sandy.	ndy. ·	
-						6.45 D19 6.75 B20	(S)N=46 (7,7,9,9,11,	,17)				from 5.60m depth, becon stiff and very stiff. bewteeen 6.00m and 6.3 depth, sandy.		
					6.75-	7.50 B21							- - - - - - - - - - - - - 	
-						7.95 D22 8.25 B23				(5.70)		from 7.30m depth, grave	- - - - - - - -	
-					8.25-5	9.00 B24							- 8- - - - - - - - - - - - 	
-						9.45 D25 0.00 B26							- - 9- - -	
-													-	
		gress & W Boreh		servatio	NS Water	Borehole Depth (m)	Diameter Diameter (mm)	Casin Depth (m)			Remarks			her
Date 26/10/2013 28/10/2013		Depth 6.0	(m) De 0	6.00 10.00	Depth (m) - -	6.00 10.00	140 115	6.00	, 0	140	 Sonic Slight 2.00rr Grour of shil Boreh Boreh SPT h 	dug inspection pit to 1.20m. N drilling from 1.20m to 10.00m seepage noted at 1.00m dept n depth. ndwater encountered overnigh ft. iole complete at 10.00m upon iole backfilled with bentonite o nammer id = GS RIG02. Ham Status: Final	 . moisture observed t . Sitting at 5.60m at scheduled depth. n completion. 	from start

				Contra	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID
	G	STAIN		Contra	ct Number:		Date Started:			Logged	By:	Checked By:	BH25
Enviro	onmen	tal Sei	vices		5414		16/10)/201	3		CLP	PS	Sheet 1 of 2
	bined R			Easting	j:		Northing:			Ground	_evel:	Plant Used:	Scale:
	namic S				386977	.5	7854	466.3	3		14.03	Sonic rig	1:25
	Coring Inf	ormation			Sampl	es & In Situ	u Testing			•		Strata Details	Groundw Backfil
TCR	SCR	RQD	FI	Run	Sam	iple ID	Test Re:	sult	Level m AOE)	Depth (m (Thickness) Legend	Strata Description	Installat
_					0.2	20 D1				(0.30)		Soft dark brown slightly gravelly sandy CLAY, with frequent roots and rootlets. Gravel is subangular to subraunded fine to coarse of	
-						0.50 B2			13.73	0.30		to subrounded fine to coarse of sandstone, quartz and mixed lithologies. (Topsoil).	1
-					0.50-	1.00 B3			13.33	(0.40)		Soft dark orangish brown slightly gravelly very sandy CLAY with occasional roots. Gravel is subangular to subrounded fine to	-
-												coarse of sandstone, quartz and mixed lithologies. Medium dense dark orangish brov slightly clayey very sandy GRAVE	
-					1 20	1.65 D4						with medium cobble content. Gra is subangular to subrounded fine t coarse of sandstone, guartz and	vel 1-
-						2.00 B5	(S)N=12 (3,6,1,2,4,5)				mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.	-
-					1.6	60 D6				(1.90)			
-													
-						2.45 D7 2.50 B8	(S)N=15 (2,9,6,5,2,2)					2-
-													-
-						50 D9 3.00 B10			11.43	2.60		Soft locally firm orangish brown slightly sandy slightly gravelly	
-					0.00							CLAY with low cobble content. Gravel is subangular to subrounde fine to coarse of sandstone, quart and mixed lithologies. Cobbles are	Z -
-						3.50 U11 0 U11						subangular to subrounded of sandstone, quartz and mixed lithologies. between 2.60m and 4.55m	3-
-					25	0 D12						depth, moisture noted.	
-						4.00 B13				(1.95)			-
-					4 00-4	4.45 D14						from 3.80m Sandy.	
-						4.50 B15	(S)N=24 (1,2,4,2,7,1	1)					
-					4.5	0 D16							
-						5.00 B17			9.48	4.55		Stiff locally hard orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subangular to	-
-												subrounded fine to coarse of sandstone, quartz and mixed Continued next sheet	-
Bo	Boring Progress & Water Observa		INS Water	Borehole Depth (m)	Diameter			ameter	Remarks:		I		
Date 16/10/2013	Time 3 1645	Depth	(m) De	Depth (m) Depth (m) <thdepth (m)<="" th=""> Depth (m) <thdepth (m)<="" th=""> Depth (m) <thdepth (m)<="" th=""> <thdepth (m)<="" th=""> <thdep< td=""><td> Sonic Groun mins. Boreho </td><td>dug inspection pit to 1.20m. No s drilling from 1.20m to 10.00m. dwater encountered at 7.50m risi ole complete at 10.00m upon sch</td><td>ng to 7.37m after 20 eduled depth.</td></thdep<></thdepth></thdepth></thdepth></thdepth>	 Sonic Groun mins. Boreho 	dug inspection pit to 1.20m. No s drilling from 1.20m to 10.00m. dwater encountered at 7.50m risi ole complete at 10.00m upon sch	ng to 7.37m after 20 eduled depth.						
											5. Boreho	 Borenole complete at 10.00m upon scheduled de 5. Borehole backfilled with bentonite on completion. 6. SPT hammer id = GS RIG02. Hammer energy ra 	
											Release S	Status: Final	

	CUSTAIN				ct Name:	Stoneha	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
	C	STAIN	ŀ	Contrac	t Number:		Date Started:			Logged E		Checked By:	B⊢	25
Enviro	onment	tal Ser	vices		5414		16/10)/201	13		CLP	PS	Sheet 2 of 2	
Comb	bined R binamic S	otary C	ored	Easting	: 386977		Northing: 7854	466.3	3	Ground L	evel: 14.03	Plant Used: Sonic rig	Scale: 1:2	25
-	Coring Info				Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Re	sult	Level (m AOI	Depth (m) (Thickness	Legend	Strata Description		Installation
	SCR	RQD	FI	Run	5.00-4 5.00-4 5.00-4 5.55 5.60-4 6.00-4 6.00-4 6.00-4 6.00-4 7.00 7.20-5 7.50-3 7.50-3 8.00 8.00-4 8.00-4 8.00-4 8.50-5 8.50-5	nple ID 5.50 U18 5.50 U18 0 D19 5.00 B20 5.45 D21 5.50 B22 7.00 B23 0 D24 7.50 B25 7.95 D26 3.00 B27 0 D28 3.50 B29 0 D30 9.45 D32 9.50 B33 0.00 B34	(S)50/188n (25,28,14,8 (S)50/212n (4,8,12,24, (S)50/215n (3,9,9,12,2)	nm 3) nm 14)	8.03)) [Thickness (1.45) 6.00 (1.00) 7.00 (3.00)		Strata Description lithologies. Very dense orangish brown slightly clayey gravelly fine to coarse SAND with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartzite and mixed lithologies. Stiff locally hard dark orangish brown slightly gravelly sandy CLAY with low cobble content. Gravel is angular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of mixed lithologies. between 7.00m and 7.50m depth, moisture noted.		
													-	
							<u> </u>		<u> </u>			End of Borehole at 10.00 m		
Bo	oring Prog	Boreho Depth (i	le C	servatio asing pth (m)	NS Water Depth (m)	Borehole Depth (m)	Diameter Diameter (mm)			ameter ^{liameter} (mm)	Remarks: 1. Hand	: dug inspection pit to 1.20m. No serv	ices encounte	red.
16/10/201:	-	10.00		2.00	- -	2.00 10.00	229 115	2.0	00	229	 Sonic Groun mins. Boreho Boreho SPT h 	drilling from 1.20m to 10.00m. dwater encountered at 7.50m rising ole complete at 10.00m upon sched ole backfilled with bentonite on com ammer id = GS RIG02. Hammer en	to 7.37m after uled depth. pletion.	20
											Release	Status: Final		

Stonehaven FAS Aberdeenshire Council BH Environmental Services 5414 07/11/2013 CLP MUB Denviron Denviron Sorie 1 Combined Rotary Cored 387511.1 Nortrix Tork Services Sorie 3.34 Sonie for 3.34 Sonie for Sorie 1 Comparatic Sampler Log Strutter Nortrix Strutter 3.34 Sonie for 3.34 Sonie for 1 1 Sorie 1	
Environmental Services 5414 07/11/2013 CLP MJB Services Combined Rotary Cored & Dynamic Sampler Log Sampler Log 387511.11 Nerving 387511.11 Divard Leve: 705673.9 3.34 Sonio frig 5010 if g 12 Compiler Rotary Cored & Dynamic Sampler Log Sampler Log Sampler Log Sampler Log Strata Details TCR SCR ROD FI Run Sampler Log Sampler Log Strata Details TCR SCR ROD FI Run Sampler Log Sampler	126
Combined Rotary Cored & Dynamic Sampler Log Testing 387511.1 Noming 785673.9 Grant Level 3.34 Part Level Solic rig Solic rig Solic rig Coring Information Samples & In Stu Testing Strate Details Strate Details TOR SCR R0D FI Run Samples & In Stu Supples & In Stu Supple	
& Dynamic Sampler Log 387511.1 785673.9 3.34 Somicing 11: Coring Information Sumples & In Stru Testing Strata Details Strata Details Image: Strata Details <td></td>	
Coring Information Samples & In Stu Testing Strata Details TCR SCR ROD FI Run Service ID Test Heaut Lindog Details Market Million TCR SCR ROD FI Run Service ID Test Heaut Lindog Details Market Million TCR SCR ROD FI Run Service ID Test Heaut Lindog Market Million Market	25
TCR SCR RQD FI Run Sample ID Test Resul Lagend Lagend 3.24 Logend 0.00 (0.30) Sinta Description 0.40 D2 0.40 0.80 B3 0.10 D1 3.28 3.24 0.06 3.24 0.06 3.24 MADE GRUNUS Returns thick services studies 0.40 D2 0.40 0.80 B3 0.40 D2 0.40 0.80 B3 2.94 0.40 0.40 0.80 L2 0.40 0.80 L2 2.94 0.40 MADE GRUNUS Returns the construct grade of instance, quartice and the construct grade of instan	Groundwa
1 0.10 D1 3.32 3.34 0.06 0.10 MMCE GROUND Reduces brock ants. MMCE GROUND Reduces brock and storm and and ant ant and storm and ant ant and ant ant and ant ant and ant	Backfill
1 0.10 D1 3.24 0.10	
1 0.40 D2 0.40-0.80 B3 2.94 0.40 Corest subd. Born sandy anglet of Instrangular for to cores grade of Instrangular for to cores anglet of Instrangular for to cores anglet of Instrangular for to cores anglet of Instrangular for the to corest subdivision of the anglet of Instrangular for anglet of Instrangular for Instrangular for for Instrangular for anglet of	
0.40-0.80 B3 0.40-0.80 B3 (0.40) agree of imestication. market of imestication. MADE (SRU)D1 Gree and blows alightly sendy standy affect to counse (RAVEL of counse) (RAVEL of counsed (RAVEL of counse) (RAVEL of counsed (RAVEL of counse) (RAVEL of counsed (RAVEL of counse) (RAVEL of	
1 0.00 4.00 4.00 0.80 0.4 0.40 0.4	
1 0.80 D4 0.80-120 B5 2.54 0.80 Setting and individual strangther inter coarse graved state. 1 1.20-165 D6 1.20-2.00 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 1 2.20-2.30 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 1 2.20-2.30 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 2 2.20-2.30 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 2 2.00-2.30 B9 2.00 W13 (S)50/75mm (8,8,11,30,9) 2.14 1.20 2 2.00-2.30 B9 2.00 W13 (S)50/75mm (8,8,11,30,9) 1.04 2.30 2.30-3.00 B11 2.40 ED10 1.04 2.30 Soft rediath blown slightly sandy SILT Soft rediath blown slightly sandy S	
0.80 D4 0.80-1.20 B5 0.80 D4 0.80-1.20 B5 2.54 0.80 In the cases graved state. 1.20-1.65 D6 1.20-2.00 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 In the cases graved state. In the cases graved state. 1.20-2.00 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 In the cases graved state. In the cases graved state. 1.20-2.00 B7 (S)50/175mm (2.00 V13 (S)50/175mm (8,9,11,30.9) In the cases GRVEL of sandstore, quartite and mixed index (quart), quartite and model inteocase. In the cases GRVEL of sandstore, quartite and model inteocase. 2.00-2.45 D8 (2.00 V13 (S)50/175mm (8,9,11,30.9) In the cases GRVEL of sandstore, quartite and model inteocase. In the cases GRVEL of sandstore, quartite and model inteocase. 2.00 V13 2.00 D10 2.40 ESD10 In the cases GRVEL of sandstore, quartite and mixed inteocase. In the cases GRVEL of sandstore, quartite and mixed inteocase. 3.00-3.45 D12 3.00-4.00 B14 (S)N=7 (0,1,1,1,2,3) In the cases GRVEL of sandstore, quartite and mixed inteocase. In the cases GRVEL of sandstore, quartite and mixed inteocase. 4.00-4.50 U15 4.00 U15 4.00-4.50 U15 4.00 U15 In the cases GRVEL of sandstore, quartite and mixed inteocase. In the cases GRVEL of sandstore, quartite and mixed inteocase. 3.00-3.00 B14	
1 0.80-1.20 B5 (0.40) Reddelb town sandy subanglar to mundel fire to cause GRAVE of some GRAVE o	
1.20-1.65 D6 1.20-2.00 B7 (S)50/274mm (4.10.13.17.12, 8) 2.14 1.20 Image: sendation e, quartite and mixed ignous standgular to conded the to corse GAVEL of sandstone, quart, quartite and mixed inhologies. 1.20 2.00-2.45 D8 2.00-2.30 B1 2.00-2.30 B1 2.00 W13 (S)50/175mm (8,9,11.30,9) 2.14 1.20 Image: sendation e, quart, quartite and mixed index standgular to conded the to corse GAVEL of sandstone, quart, quartite and mixed inhologies. 2.00-2.45 D8 2.00-2.30 B1 2.40 D10 2.40 ESD10 (S)50/175mm (8,9,11.30,9) 1.04 2.30 3.00-3.45 D12 3.00-4.00 B14 1.04 2.30 Soft reddish brown slightly sandy SUT.	
1.20-1.65 DF 1.20-2.00 B7 (S)50/274mm (4.10,13,17,12, 8) 2.14 1.20 Very dress yellowish brown slightly clowey very sandy subangular to rounded time to course GRAVEL of possible and mixed timologies. 2.00-2.45 DB 2.00-2.30 B9 2.00 W13 (S)50/175mm (8,9,11,30,9) (1.10) 2 2.00-2.45 DB 2.00-2.30 B9 2.00 W13 (S)50/175mm (8,9,11,30,9) 1.04 2.30 2.40 D10 2.40 ESD10 1.04 2.30 Soft reddish brown slightly sandy SUT. Soft reddish brown slightly sandy SUT. 3.00-3.45 D12 3.00-4.00 B14 (S)N=7 (0,1,1,1,2,3) (G)N=7 (0,1,1,1,2,3) (3.30) from 3.80m depth, possibly clowey. from 3.80m depth, possibly clowey. 4.00-4.50 U15 4.00 U15 4.50 D16 4.50-5.00 B17 (3.30) from 3.80m depth, possibly clowey. from 3.80m depth, possibly clowey.	
1.20-2.00 B7 1.20-2.00 B7 1.20-2.00 B7 Very derse yellowsh from slightly change way sandy sandy sandy sandy sandstone quote, yellowsh and mixed lithologies. Very derse yellowsh from slightly change way sandy sandy sandy sandstone quote, yellowsh and mixed lithologies. 2.00-2.45 D8 2.00 W13 (S)50/175mm (8,9,11,30.9) (1.10) Image: sand mixed lithologies. 2 2.00-2.45 D8 2.00 W13 (S)50/175mm (8,9,11,30.9) (1.10) Image: sand mixed lithologies. 2 2.40 D10 2.40 ESD10 1.04 2.30 Soft reddish brown slightly sandy SILT. Soft reddish brown slightly sandy SILT. Soft reddish brown slightly sandy SILT. Image: sand mixed lithologies. 4.00-4.50 U15 4.00 U15 4.00-4.50 U15 4.00 U15 (3.30) Image: sand mixed lithologies. Image: sand mixed lithologies. 4.00-4.50 U15 4.50 D16 4.50 D16 Image: sand mixed lithologies. Image: sand mixed lithologies. Image: sand mixed lithologies.	
8) a b current of the course GRAVEL of standard mixed ithologies. 1 2.00-2.45 D8 (S)50/175mm (1.10) current of the course GRAVEL of standardsone, quart, quartile and mixed ithologies. 2.00-2.45 D8 (S)50/175mm (1.10) current of the course GRAVEL of standardsone, quart, quartile and mixed ithologies. 2.00-2.45 D8 (S)50/175mm (1.10) current of the course GRAVEL of standardsone, quart, quartile and mixed ithologies. 2.00-2.45 D8 (S)50/175mm (8,9.11,30.9) current of the course GRAVEL of standardsone, quart, quartile and mixed ithologies. 2.40 D10 2.40 D10 1.04 2.30 Soft redish brown slightly sandy SILT. 3.00-3.45 D12 (S)N=7 (0,1,1,1,2,3) standardsone, quart, quart, quartile and mixed ithologies. 4.00-4.50 U15 4.00-4.50 U15 (3.30) current of the course GRAVEL of the course of th	
2.00-245 D8 (S)50/175mm (1.10) mixed lithologies. 2.00-230 B9 2.00 W13 (3.01,1,30.9) 2.30-3.00 B11 1.04 2.30-3.00 B11 1.04 2.30 Soft reddish brown slightly sandy SILT. 2.40 ESD10 3.00-3.45 D12 (S)N=7 Soft reddish brown slightly sandy SILT. 3.00-3.45 D12 (S)N=7 (1.1,1,2,3)	
2.00-2.45 D8 2.00-2.30 B9 2.00 W13 2.30-3.00 B11 2.40 D10 2.40 ESD10 3.00-3.45 D12 3.00-4.00 B14 4.00-4.50 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
2.00-2.45 DB 2.00-2.30 B3 2.00-2.30 B3 2.00-2.30 B3 2.00-2.30 B1 2.40 D10 2.40 ESD10 3.00-3.45 D12 3.00-4.00 B14 4.00-4.50 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
2.00-230 B9 2.00 W13 2.30-3.00 B11 2.40 ESD10 3.00-3.45 D12 3.00-4.00 B14 4.00-4.50 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
2.00-230 B9 2.00 W13 2.30-3.00 B11 2.40 ESD10 3.00-3.45 D12 3.00-4.00 B14 4.00-4.50 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
2.00 W13 CONTIGNO 2.30-3.00 B11 1.04 2.40 D10 2.40 ESD10 3.00-3.45 D12 (S)N=7 3.00-4.00 B14 (S)N=7 (0.1,1.1,2.3)	
2.40 D10 2.40 ESD10 Soft reddish brown slightly sandy 3.00-3.45 D12 3.00-3.45 D12 SI.T. 3.00-3.45 D12 (S)N=7 SI.T. (1,1,1,2,3) SI.T. SI.T. SI.T. SI.T. SI.T.	
2.40 D10 2.40 ESD10 Soft reddish brown slightly sandy 3.00-3.45 D12 Soft reddish brown slightly sandy SIT. 3.00-3.45 D12 Soft reddish brown slightly sandy Sit. 3.00-3.45 D12 Soft reddish brown slightly sandy Sit. 4.00-4.50 U15 Sit. Sit. 4.00-4.50 U15 Sit. Sit. 4.00-4.50 U15 Sit. Sit. Sit. Sit. Sit. Sit. <t< td=""><td></td></t<>	
2.40 ESD10 3.00-3.45 D12 3.00-4.00 B14 (3.00) 4.00-4.50 U15 4.00 U15 4.50 D16 4.50 D16 4	
3.00-3.45 D12 (S)N=7 3.00-4.00 B14 (S)N=7 (0,1,1,1,2,3) from 3.80m depth, possibly from 3.80m depth, possibly from 3.80m depth, possibly f	
3.00-3.45 D12 (S)N=7 3.00-4.00 B14 (S)N=7 (0,1,1,1,2,3) from 3.80m depth, possibly from 3.80m depth, possibly from 3.80m depth, possibly f	
3.00-3.45 D12 (S)N=7 (0,1,1,1,2,3) 3- 3.00-4.00 B14 (S)N=7 (0,1,1,1,2,3) - 4.00-4.50 U15 (3.30) - - 4.00-4.50 U15 - - - 4.00 U15 - - - 4.50 D16 - - -	
3.00-3.45 D12 (S)N=7 3.00-4.00 B14 (S)N=7 3.00-4.00 B14 3.00-4.00 B14 <td< td=""><td></td></td<>	
4.00-4.50 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.00 U15 4.00 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.00 U15 4.00 U15 4.00 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.00 U15 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U15 4.00 U15 4.00 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16 4.50 D16	
4.00-4.50 U15 4.00 U1	
4.50 D16 4.50 B17	
4.50 D16 4.50 b17 4.50 b17	
4.50 D16 4.50-5.00 B17	
4.50 D16 4.50-5.00 B17	
Continued next sheet	
Boring Progress & Water Observations Borehole Diameter Casing Diameter Remarks: Date Time Borehole Casing Water Depth (m) Depth (m) D	red.
07/11/2013 1800 7.50 6.00 - 2.00 229 2.00 229 3 Rotary coring from 7.50m to 13.00m	
08/11/2013 08/00 7.50 6.00 3.13 7.50 140 7.50 140 4. Groundwater encountered at 2.00m depth, rising to 1.430 20 mins.	m after
 5. Borehole backfilled with bentonite on completion. 6. SPT hammer id = GS RIG02. Hammer energy ratio =399 	%
Release Status: Final	

	₽∎	STAIN		Contract		Stoneha	/en FAS			Client:	Aber	rdeenshire Council	Borehole ID	
					Number: 5414		Date Started: 07/11	/2012	2	Logged B		Checked By: MJB	BH	26
	onmen			Easting:			Northing:	/2010	,	Ground L		Plant Used:	Sheet 2 of 3 Scale:	
	bined R namic S			-	387511		-	673.9		Ground E	3.34	Sonic rig	1:2	25
	Coring In	formatior	ı		Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Res	sult (m	Level n AOD)	Depth (m) (Thickness)	Legend	Strata Description		Installation
-					5.00-5	5.45 D18 5.60 B19	(S)N=10 (0,2,2,2,3,3)				X X X X X X X X X X X X X X X X X X X X	Remaining Detail : 4.80m - 5.00m : 1. no sandstone cobble.	- - - -	
					5.7	6.00 B21 0 D20 7.00 B22	(S)50/261m (8,9,13,16,1)	ım	-2.26	5.60	હ્યું. નિર્વેષ્ઠ br>સ્વિકે જે બુદ્ધારે કે બુદ્ધારે નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ સ્વિકે સ્વિકે નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ્ઠ નિર્વેષ	Firm becoming stiff reddish brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular of mixed lithologies. from 6.00m depth, sandy.	- - - - - - - - - - - - - - - - - - -	
-					7.1	7.50 B24 0 D23		-	-3.66	7.00		Reddish brown mottled greenish grey gravelly fine to medium SAND. Gravel is angular fine to coarse of sandstone.		
- - - - 67	47	41	1 <u>NI</u> 4	7.50		7.95 D25 -7.92 C	(S)50/6mm (25,50)	-	-4.16	7.50		Medium strong brown and greenish grey medium grained SANDSTONE. Discontinuities are 1) subhorizontal medium spaced rough planar. 2) 50 deg widely spaced rough planar. between 7.92m and 7.98m depth, recovered non-intact as	- - - 8-	
-			NI					-	-4.83	8.17		gravel. between 8.12m and 8.17m depth, recovered non-intact as clayey gravel. Assessed Zone of Core Loss.		
-			AZCL	8.50						(0.63)			- - -	
	54	45	2 NI 2			-9.00 C -9.68 C			-5.46	8.80		Medium strong brown and greenish grey medium grained SANDSTONE. Discontinuities are 1) subhorizontal medium spaced rough planar. 2) 50 deg widely spaced rough planar. between 9.10m and 9.17m depth, recovered non-intact as clayey gravel.	- 9 - - - - - -	
- - -			NI 1									between 9.68m and 9.92m depth, recovered non-intact as clayey sandy gravel. Continued next sheet		
	oring Prog	Bore	hole C	Casing	Water	Borehole Depth (m)	Diameter Diameter (mm)	Casir Depth (m)	ng Diar		Remarks	: dug inspection pit to 1.20m. No servi	ces encounter	ed
Date 07/11/201 08/11/201 08/11/201	Time 3 1800 3 0800 3 1200	Depth) 7.5	n (m) De	6.00 6.00 7.50		2.00 7.50 13.00	229 140 115	2.00 7.50		229 140	 Sonic Rotary Groun Grouning Boreho 	drilling from 1.20m to 7.50m. y coring from 7.50m to 13.00m. ndwater encountered at 2.00m depth,	rising to 1.43r letion.	n after
											Release	Status: Final		

	Γ∎	STAIN		Contract		ehave	en FAS			Client:	Ab	erdee	enshire Council	Borehole ID	
Enviro			rvices		Number: 5414		ate Started: 07/11	/20 ⁻	13	Logged	CLF)	Checked By: MJB	Sheet 3 of 3	126
	bined R namic S			Easting:	387511.1	N	lorthing: 7856	673.	9	Ground	Level: 3.34	Ļ	Plant Used: Sonic rig	Scale: 1:2	25
-	Coring Inf		-		Samples & I	In Situ T	Testing						Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sample ID		Test Res	sult	Leve (m AO	Depth (n D) (Thicknes) Legen	t l	Strata Description		Installation
-			AZCL	10.00					-6.60	(0.56)			ssessed Zone of Core Loss.	-	
63	38	33	4		10.60-10.80	10 C					4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	gr gr S/ 1)	ledium strong brown and greenish rey medium grained ANDSTONE. Discontinuities are s subhorizontal medium spaced bugh planar. 2) 50 deg widely baced rough planar.		-
-		-	NI		11.16-11.5	60 C						· · ·	between 10.60m and 10.95m depth, 1 no. discontinuity. 80 dep rough planar. between 10.95m and 11.16m depth, recovered non-intact as	g	
•			1	11.50								· · · · · · · · · · · · · · · · · · ·	gravel. from 11.16m depth, extremely strong.		
-		-	NI 1	. 1.00						(2.44)			between 11.50m and 11.60m depth, recovered non-intact as gravel.		
-			<u>NI</u> 2							(2.44)		· · ·	between 11.83m and 11.88m depth, recovered non-intact as clayey gravel.	- 12-	
97	77	67	NI		12.23-12.7	0 C						· · · · · · · · · · · · · · · · · · ·	between 11.88m and 12.18m depth, 1 no. fracture. subvertical rough stepped. between 12.18m and 12.23m depth, recovered non-intact as clayey gravel.		
-			2										uayey glavei.	-	
- - - - - -									-9.66	3 13.00		E	nd of Borehole at 13.00 m		
														14 - - - - - - - - - - - - - - - - - - -	
					<u> </u>										
Bc Date 07/11/2013 08/11/2013 08/11/2013	Time Time 3 1800 3 0800 3 1200	Boreh Depth 7.5	nole C (m) De	Casing	Water Dept Depth (m) 2.		Diameter Diameter (mm) 229 140 115	Cas Depth 2.0 7.5	(m) [ameter Diameter (mm 229 140	2. Son 3. Rota 4. Gro 20 r 5. Bore	arks: and dug inspection pit to 1.20m. No services encountered. onic drilling from 1.20m to 7.50m. otary coring from 7.50m to 13.00m. roundwater encountered at 2.00m depth, rising to 1.43m after 0 mins. orehole backfilled with bentonite on completion. PT hammer id = GS RIG02. Hammer energy ratio =39%			m after
											Releas	e Status	s: Final		

	CUSTAIN				ct Name:	Stoneha	/en FAS			Client:	Abero	deenshire Council	Borehole ID
		SIRIN		Contra	ct Number:		Date Started:			Logged E	By:	Checked By:	BH27
Envir	onmen	tal Sei	rvices		5414		28/10)/201	3		CLP	MJB	Sheet 1 of 3
	bined R			Easting			Northing:			Ground L		Plant Used:	Scale:
& Dy	namic S	Sample	er Log		387531	.0	7856	607.4	1		3.02	Sonic rig	1:25
	Coring In	ormation			Sampl	es & In Situ	u Testing					Strata Details	Groundwater Backfill &
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Res	sult	Level (m AOD	Depth (m) (Thickness	Legend	Strata Description	Installation
-					0.1	06 D1 10 D2 0.50 B3			2.96 2.92	0.06 0.10 (0.40)		MADE GROUND. Paving slab. MADE GROUND. Grey slightly gravelly fine to coarse sand. Gravel is subangular to subrounded fine to coarse of sandstone.	
-						50 D4 1.20 B5			2.52	0.50		MADE GROUND. Brown gravelly fit to coarse sand. Gravel is angular to rounded fine to coarse of sandstone and mixed igneous lithologies.	
-						1.65 D6 2.00 B7	(S)N=42 (3,8,10,12,1	10 1	1.82	(0.70)		MADE GROUND. Dark brown slightly gravelly sandy clay. Gravel angular to rounded fine to coarse of sandstone, coal and mixed igneous lithologies.	
-						2.00 D1	(3,8,10,12,1 0)	10,1		(1.20)		multicoloured slightly clayey gravelly fine to coarse SAND with low cobbe content. Gravel is subangular to rounded fine to coarse of mixed lithologies. Cobbles are subrounded to rounded of mixed lithologies.	
-						2.45 D8 2.40 B9	(S)50/105m (5,9,29,21)	ım		(1.20)			2-
-						0 D10 3.40 B11			0.62	2.40		Soft slightly sandy slightly gravelly SILT. Gravel is subangular to subrounded fine to coarse of sandstone and mixed lithologies. from 2.60m depth, very thinly laminated with closely spaced thin laminations of fine sand.	
-						3.45 D12 4.00 B13	(S)N=10 (0,1,2,2,2,4)	-0.38	3.40			3-
					4 00-4	4.50 U14				(0.90)	x px(x) px(Fim becoming stiff reddish brown slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subangular to subrounded fine to coarse of sandstone and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.	
					4.0	0 U14			-1.28	4.30		Firm reddish brown slightly gravelly very sandy CLAY. Gravel is subangular to subrounded fine to	
-						0 D15 5.00 B16				(0.70)		Coarse of sandstone, quartz and mixed lithologies.	
B	oring Prop	ress & W	/ater Ob	servatio	ns	Borehole	Diameter	Cas	ing Dia	meter	Remarks:		
Date	Time	Boreh Depth	ole C	Casing epth (m)	Water Depth (m)	Depth (m)	Diameter (mm)	Depth (ameter (mm)	1. Hand d	lug inspection pit to 1.20m. No se drilling from 1.20m to 9.00m.	rvices encountered.
28/10/201 29/10/201 30/10/201	3 1800	11.5	60	- 9.00 9.00	- 1.53 1.61	4.00 9.00 15.00	229 140 115	4.00 9.00	0	229 140	 Rotary (Sonic d Ground 20 mins Boreho 	coring from 9.00m to 11.50m. drilling from 11.50m to 15.00m dep dwater encountered at 1.20m dept	h, rising to 1.10m after
											Release S	itatus: Final	

	CIIISTAIN				ct Name:	Stonehav	ven FAS			Client:	Aber	rdeenshire Council	Borehole ID	
	L	alkiii		Contra	ct Number:		Date Started:			Logged E	Ву:	Checked By:	BH	27
Envir	onmen	tal Se	rvices		5414		28/10)/20 [,]	13		CLP	MJB	Sheet 2 of 3	
	oined R			Easting	5		Northing:			Ground I		Plant Used:	Scale:	
	namic S				387531	.0	785	607.	4		3.02	Sonic rig	1:2	25
	Coring In	formatior	<u>ו</u>		Sampl	es & In Situ	u Testing					Strata Details		Groundwater
TCR	SCR	RQD	FI	Run	· · ·	ple ID	Test Re	sult	Level (m AOI	Depth (m (Thickness	Legend	Strata Description		Backfill & Installation
-						5.45 D17 6.00 B18	(S)50/86mi (25,30,20)	m	-1.98	5.00		Very dense orangish brown and multicoloured slightly clayey very gravelly fine to coarse SAND with low coble content. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone and mixed lithologies.	-	
-					6.00-6	6.45 D19 6.20 B20	(S)50/225n (20,5,18,15		-3.18			from 6.00m depth, becoming clayey. Firm locally stiff and friable dark	- - - 6	
-						0 D21 7.30 B22						orangish brown gravelly very sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed lithologies.	- - - - - - - - - - 7-	
-					7.50-7	7.50 B23 7.95 D24 8.50 B25	(S)50/12mi (25,50)	m		(2.30)		from 7.30m depth, friable, slightly sandy with fine to coarse gravel sized pockets of sand and sandstone.		
- - - - -				9.00		9.00 B26 -9.24 C			-5.48 -5.98	(0.50)		Reddish brown and light greenish grey thinly interbedded hard friable sandy CLAY and fine to medium grained SANDSTONE.	- - - - - - - - - - - 	
- - - - 100	68	39	10		9.00-9	-9.60 C	(S)50/3mm (25,50)	1	. 0.90	(1.50)		Weak reddish brown coarse grained SANDSTONE. Discontinuities are 1) Closely to medium spaced horizontal planar rough closed stained brown. 2) Random planar rough closed stained brown.	1 - - - - - -	
													-	
			<u> </u>	<u> </u>								Continued next sheet		
Bo	oring Proc	gress & V Bore		oservatio	ons Water		Diameter			ameter	Remarks			
Date 28/10/201 29/10/201 30/10/201	3 1800	Depth 1.2	n (m) D 20 50	epth (m) - 9.00 9.00	Water Depth (m) - 1.53 1.61	Depth (m) 4.00 9.00 15.00	Diameter (mm) 229 140 115	Depth 4.(9.0	00	229 140	 Sonic Rotary Sonic Groun Groun Boreh SPT h 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 9.00m. y coring from 9.00m to 11.50m. drilling from 11.50m to 15.00m dep idwater encountered at 1.20m deptins. ole backfilled with bentonite on con nammer id = GS RIG02. Hammer en Status: Final	oth. h, rising to 1.10r npletion.	m after

	P	ISTAIN		Contrac	t Name:	Stoneha	/en FAS			Client:	Aber	deenshire Council	Borehole ID	
Enviro	onmen	ital Se			t Number: 5414)/2013		Logged B	CLP	Checked By: MJB	BH27 Sheet 3 of 3	7
		Rotary (Sample		Easting	387531	.0	Northing: 7850	607.4		Ground L	evel: 3.02	Plant Used: Sonic rig	Scale: 1:25	
	Coring In	formatior	1		Sampl	es & In Situ	u Testing					Strata Details	B	oundwate
TCR	SCR	RQD	FI	Run	San	nple ID	Test Re	sult (m	evel AOD)	Depth (m) (Thickness)	Legend	Strata Description	In	stallation
			NI 17			-10.38 C						Remaining Detail : 9.99m - 10.10m : between 9.99m and 10.10m depth, recovered non-intact. below 10.10m depth, moderately strong.		
-			NI	10.50				-7	7.48	10.50		Weak reddish brown coarse grained SANDSTONE with occasional bands of weak cemented slightly clayey fine to coarse sand. Discontinuities are closely spaced horizontal planar rough infilled with	-	
- 98	57	39		-				-7	7.98	11.00	· · · · · · · · · ·	clayey fine to coarse sand. between 10.50m and 11.00m depth, recovered non-intact.	11-	
-			8			-11.50 C						Strong reddish brown coarse grained SANDSTONE. Discontinuities are closely to medium spaced horizontal planar rough.		
-				11.50										
- - 96 - -	85	51			12.03	-12.15 C							- 12 - - -	
-			7	12.50								between 12.50m and 13.34m depth, 1 no. 85 degree inclined fracture, planar rough stained brown.		
- - 100 -	66	12								(4.00)			13-	
-				13.50		-13.50 C -13.78 C							-	
- - - 100	31	31	NI									between 13.78m and 14.40m depth, recovered non-intact.		
-			5		14.40	-14.60 C							-	
-			NI									between 14.60m and 15.00m depth, recovered non-intact as ver gravelly clayey sand.	y -	
I⊥ Rr	oring Prog	gress & V	Vater Oh	servation	ns	Borehole	Diameter	Casing	n Diar	neter T	Remarks:	End of Borehole at 15.00 m		
Date 28/10/201: 29/10/201: 30/10/201:	Time 3 1800 3 1800	Borel Depth) 1.2) 11.3	hole C n (m) De 20 50	2asing apth (m) - 9.00 9.00	Water Depth (m) - 1.53 1.61	Depth (m) 4.00 9.00 15.00	Diameter (mm) 229 140 115	Depth (m) 4.00 9.00	<u> </u>	meter (mm) 229 140	 Hand e Sonic e Rotary Sonic e Ground Ground Boreho 	dug inspection pit to 1.20m. No sen drilling from 1.20m to 9.00m. coring from 9.00m to 11.50m. drilling from 11.50m to 15.00m depit dwater encountered at 1.20m depth	h. , rising to 1.10m aft pletion.	ter
	Release Status: Final					Status: Final								

	CIIS	TAIN		Contrac	ct Name:	Stoneha	ven FAS			Client:	Aber	deenshire Council	Borehole ID	
			ľ	Contrac	ct Number: 5414		Date Started: 01/11	/204	3	Logged E	^{3y:} CLP	Checked By: MJB	— B⊦	128
	onment			Fastiss				/201	3	Crewerd		Plant Used:	Sheet 1 of 2 Scale:	
	bined Ro namic S			Easting	387347		Northing: 7857	741.7	7	Ground L	3.88	Sonic rig		25
-	Coring Info	ormation			Sampl	es & In Situ	u Testing					Strata Details		Groundwate Backfill &
TCR	SCR	RQD	FI	Run	Sam	nple ID	Test Res	sult (Level (m AOD)	Depth (m) (Thickness	Legend	Strata Description	า	Installation
					0.2 0.30- 0.50-	0.30 B2 20 D1 0.50 B3 0.80 B4			3.78 3.58	0.10		MADE GROUND. Red brick MADE GROUND. Orangish and multicoloured fine to coa sand. MADE GROUND. Dark brow red and black slightly clayey gravelly fine to coarse sand medium cobble content. Gra subangular to subrounded fin coarse of sandstone, quartz concrete and mixed lithologi	brown arse n mottled / with vel is ne to , brick, es.	
						1.65 D6 2.00 B7	(S)N=45 (3,8,22,12,6	6,5)		(1.70)		from 0.80m depth, clay	ey. 1-	
-					2.2	2.45 D8 20 D9) ESD9	(S)N=44 (1,10,10,10, 12)	,12,	1.88	2.00 (0.40)	<u>ables ables</u> <u>ables ables</u> <u>ables ables</u> <u>ables ables</u> <u>ables ables</u> <u>ables ables</u> <u>ables ables</u>	Plastic dark brown slightly cl amorphous PEAT.	ayey 2-	
-					2.40-3	3.00 B10			1.48	2.40	shka shka shka h shka shka shka shka h shka shka shka shka h shka shka shka shka h shka shka shka shka shka h shka shka shka shka shka shka shka shk	Dark brown clayey gravelly f coarse SAND. Gravel is sub to subrounded fine to coarse sandstone, quartz and mixe lithologies.	angular of	
-						3.45 D11 3.50 B12	(S)N=11 (1,1,1,2,7)		0.88	3.00		Soft orangish brown slightly SILT.	sandy 3	
-					2.50	4 00 814			0.29	(0.50)	× ×	at 3.40m depth, 1 no. c	obble.	
-					3.6	4.00 B14 0 D13 4.45 D15			0.38	3.50		Firm locally stiff slightly sand slightly gravelly CLAY. Grav subangular to subrounded fir coarse of sandstone, quartz mixed lithologies.	el is ne to	
-						5.00 B16	(S)N=25 (3,4,8,4,6,7))				from 4.00m depth, beco sandy.	ming	
												Continued next sheet		
Bo	pring Progr	ess & Wa	ater Obs	servatio	ns	Borehole	Diameter	Cas	ing Dia	neter	Remarks:			
Date 01/11/201: 02/11/201: 02/11/201:	Time 3 1800 3 0800	Borehol Depth (n 3.00 3.00 10.00	le C n) Dej	asing pth (m) 3.00 3.00 7.50	Water Depth (m) - 1.67 1.75	Depth (m) 7.50 10.00		Depth (1 7.50	m) Dia	140	 Hand c Sonic c Borehc Ground Ground Borehc 	lug inspection pit to 1.20m. drilling from 1.20m to 10.00r le complete at 10.00m upor dwater encountered at 2.50r s. le backfilled with bentonite ammer id = GS RIG02. Ham	n. n scheduled depth. n depth, rising to 2.40 upon completion.	m after
											Release S	itatus: Final		

	Contract Name: Stoneha	ven FAS	(Client:	Aberdee	enshire Council	Borehole ID	
CESTAIN	Contract Number:	Date Started:		Logged By	/:	Checked By:	BH	28
Environmental Services	5414	01/11/20 ⁻	13		CLP	MJB	Sheet 2 of 2	
Combined Rotary Cored	Easting:	Northing:		Ground Le		Plant Used:	Scale:	
& Dynamic Sampler Log	387347.8	785741.	7		3.88	Sonic rig	1:2	5
Coring Information	Samples & In Sit	u Testing				Strata Details		Groundwater Backfill &
TCR SCR RQD FI	Run Sample ID	Test Result	Level [(m AOD) (Depth (m) Thickness)	Legend	Strata Description		Installation
	5.00-5.45 D17 5.00-5.80 B18 5.90 D19 6.00-6.45 D20 6.00-6.60 B21	(S)50/236mm (4,8,13,18,16,3) (S)50/255mm (7,11,12,14,17, 7)		(3.10)	s s s	Firm locally stiff slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to xoarse of sandstone, quartz and nixed lithologies. from 5.80m depth, sandy occasionally very sandy.	- - - - - - - - - - - - - - - - - - -	
	6.60-7.25 B22		-2.72	6.60 (0.65)	s s c	Stiff reddish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded fine to parse of sandstone, quartz and nixed lithologies.	- - - 7 -	
	7.25-8.00 B23 7.50-7.95 D24	(S)50/95mm (18,7,40,10)	-3.37	7.25	a s f	Stiff becoming hard reddish brown and multicoloured slightly gravelly sandy CLAY. Gravel is subangular ine to coarse of sandstone, quartz and mixed lithologies.		
	8.00-8.60 B25			(1.35)			- 8 - - - - -	
	8.60-9.00 B26 9.00-9.45 D27 9.00-10.00 B28	(S)50/130mm (2,1,20,30)	-4.72	8.60	r C	ight yellowish brown and nulticoloured gravelly very sandy CLAY. Gravel is subangular to subrounded fine to coarse of sandstone, quartz and mixed thologies.	- - - - 9- -	
				(1.40)			- - - - - - - - - - - - - - - - - - -	
Boring Progress & Water Ob	servations Borehole	Diameter Cas	sing Diame	eter	Remarks:	End of Borehole at 10.00 m		
Date Time Depth (m) De 01/11/2013 1800 3.00	Sasing pth (m) Water Depth (m) Depth (m) 3.00 - 7.50 3.00 1.67 10.00 7.50 1.75 10.00	Diameter (mm) Depth 140 7.5 115	(m) Diame	eter (mm) 140	 Sonic drilli Borehole c Groundwa 20 mins. Borehole b 	inspection pit to 1.20m. No serv ng from 1.20m to 10.00m. complete at 10.00m upon sched ter encountered at 2.50m depth packfilled with bentonite upon co ner id = GS RIG02. Hammer en	uled depth. , rising to 2.40n ompletion.	n after
					Release Statu	us: Final		

	CUSTAIN				ct Name:	Stonebay	ven FAS			Client:	Aber	deenshire Council	Borehole ID
	C	STAIN		Contra	ct Number:		Date Started:			Logged		Checked By:	BH29
Enviro	nmen	tal Sei	rvices		5414		17/10)/20	13	-33	CLP	PS	
		totary C		Eastinę	g:		Northing:			Ground	Level:	Plant Used:	Sheet 1 of 2 Scale:
		Sample			386997	.5	7854	470.	2		16.23	Sonic rig	1:25
(Coring In	formation			Sampl	es & In Situ	u Testing					Strata Details	Groundwa Backfill
TCR	SCR	RQD	FI	Run	Sam	ple ID	Test Res	sult	Leve (m AO	Depth (m D) (Thickness) Legend	Strata Description	Installati
						20 D1 0.50 B2			15.9	(0.30)		Dark brown slightly clayey slightly gravelly fine to medium SAND, with frequent roots and rootlets. Gravel is subangular of sandstone (Topsoil).	
_						1.00 B3			15.9		به منعنه به محمد محمد به به منعنه به به منعنه به به منعنه به	Dark orangish brown clayey gravelly fine to medium SAND, with low	/
-												cobble content. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz, quartzite and mixed lithologies. Cobbles are subangular to subrounded of sandstone, quartzite and mixed lithologies.	
-						1.65 D4 2.00 B5	(S)N=25 (0,1,1,4,6,1	4)		(2.10)		Medium dense locally loose, orangish brown slightly gravelly ven clayey fine to medium SAND, with low cobble content. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone, quartz and mixed lithologies. With occasional roots	1- / -
-						2.45 D6 2.50 B7	(S)N=4 (1,1,0,1,2,1)				and rootlets. from 2.00m depth, with pockets of dark brown clayey sand.	s 2-
-						60 D8 3.00 B9			13.6	3 2.60		Soft thinly interlaminated orangish brown slightly gravelly CLAY and fine SAND. Gravel is subangular to	
-						3.45 D10 3.40 B11	(S)N=12 (0,2,2,2,2,6)		(0.80)		rounded, fine to coarse of sandstone, quartz and mixed lithologies. at 2.70m depth, fine to coarse gravel sized pockets of yellowish brown fine to coarse sand.	3-
-						0 D12 4.00 B13			12.8	3 3.40		Dense orangish brown and multicoloured, slightly clayey very	
- - -						4.70 B15	(S)N=39			(1.30)		gravelly fine to coarse SAND, with low cobble content. Gravel is subangular to subrounded, fine to coarse of sandstone, quartz and mixed lithologies. Cobbles are subangular to subrounded of sandstone.	4
- - - -					4.10-4	4.45 D14	(2,6,8,8,9,1	<i>4)</i>					
-					4.70-	5.00 B16			11.5	3 4.70		Firm becoming stiff orangish brown slightly sandy slightly gravelly CLAY. Gravel is subangular to Continued next sheet	
Во	oring Prog	gress & W				Borehole	Diameter	Ca	sing D	ameter	Remarks:		
Date 17/10/2013	Time	Boreh Depth	iole C (m) De	Casing apth (m) 5.00	Water Depth (m) -	Depth (m) 5.00 6.00	Diameter (mm) 140 115	Depth		Diameter (mm)	 Sonic Groun mins. Boreho Boreho 	dug inspection pit to 1.20m. No ser drilling from 1.20m to 6.45m. dwater encountered at 4.00m rising ole terminated at 6.45m by Enginee ole backfilled with bentonite on con ammer id = GS RIG02. Hammer en	g to 2.43m after 20 er. npletion.
											Release \$	Status: Final	

CUSTAIN		Stonehave			Client:		deenshire Council	Borehole ID	
Environmental Services			Date Started: 17/10/2	2013	Logged E	CLP	Checked By: PS	BH Sheet 2 of 2	29
Combined Rotary Cored & Dynamic Sampler Log	Easting: 386997		Northing: 78547	0.2	Ground L	.evel: 16.23	Plant Used: Sonic rig	Scale:	25
Coring Information	Samp	les & In Situ	Testing				Strata Details		Groundwater Backfill & Installation
TCR SCR RQD FI	Run Sar	mple ID	Test Result	t Level (m AOD	Depth (m) (Thickness	Legend	Strata Description		Installation
	5.00- 5.0 5.5	5.50 U17 20 U17 50 D18 6.00 B19 6.45 D20	(S)50/223mm (6,9,14,15,21)		(1.75) 6.45		subrounded, fine to medium of sandstone, quartz and mixed lithologies. from 5.30m depth, with thin beds of fine to coarse sand.		
								7- - - - - - - - - - - - - - - - - - -	
Boring Progress & Water Ob		Borehole [Casing Dia		Remarks:		9 - - - - - - - - - - - - - - - - - -	od
	epth (m) Depth (m)					2. Sonic	dug inspection pit to 1.20m. No ser drilling from 1.20m to 6.45m.		
17/10/2013 1130 6.45	5.00 -	5.00 6.00	140 115	5.00		 Groun- mins. Boreho Boreho SPT h 	dwater encountered at 4.00m rising ole terminated at 6.45m by Enginee ole backfilled with bentonite on com ammer id = GS RIG02. Hammer en Status: Final	er. Apletion.	

Appendix 4.3 - Observation Pit Logs

COSTAIN	Contrac			naven	FAS	Client: Aberdee	enshire Council	Trial Pit ID:	~			
Environmental Se	Contrac		^{er:} 114	Date	Started: 04/11/201	Logged By: I3 PS	Checked By: MJB	Sheet 1 of 1	2			
Trial Pit Log	Easting:		-	North	ing: –	Ground Level:	Plant Used: Hand Tools	Scale: 1:50				
		_	1						1			
Samples & In Si	-	Water	Reduced Level	Lagand	Depth (m)	Strata De	etails Strata Description		Back			
Sample ID 0.10 D1	Test Result	-	Level	Legend	Depth (m) (thickness)	MADE GROUND. Dark brown slightly gravelly fine to coarse ash sand. Gravel is subangular to rounded fine to coarse of sandstone, brick						
0.10-0.60 B2 0.60 D3 0.60-1.00 B4 1.00 D5 1.00 ESB6 1.00-1.50 B6					(0.60) 0.60 (0.40) 1.00 (0.50)	and mixed lithologies. MADE GROUND. Brown gravelly fine to coarse sand with high cobble content. Gravel is subangular to rounded fine to coarse of sandstone, quartzite and mixed lithologies. Cobbles are subangular to rounded of quartzite. Reddish brown sandy subangular to rounded fine to coarse GRAVEL of						
					1.50	sandstone, guartzite and mix	ged igneous lithologies with hi gular to rounded of sandstone	gh cobble and mixed				
Dimensions: Final Depth: 1.50m							rom GL to 1.50m. Terminated	due to boulder				
	Ler	FACE Angth (1	m) ——			obstruction with engineer's 2. No groundwater encounter 3. All sides stable. 4. Photgraphs taken of side fi 5. Trial pit backfilled on comp	red. aces and spoil.					
FACE B → Width (m) 0.30	Orient	ation:			FAC							

COSTAIN	1	Contract N			aven	FAS		Aberdee	enshire Council	Trial Pit ID:		
GUƏTAIN		Contract N			Date	Started:		Logged By:	Checked By:	TP1		
Environmental S	Services		54	14	Neat	06/11/20)13	PS	MJB Plant Used:	Sheet 1 of 1		
Trial Pit Log	g	Easting: 3	874	409.0	North	785740	Hand Tools					
											-1	
Samples & In S			Water	Reduced Level	Legend	Depth (m) (thickness)		Strata De			Back	
Sample ID	Test R	esult	É	Level 3.29	Legena	(thickness) 0.10		GROUND. Concrete.	Strata Description		411100	
				3.19		0.20	Angul	E GROUND. Dark brow ar to subangular fine to sbestos sheeting. of Trial Pit at 0.20 m	n gravelly fine to coarse ash o coarse of sandstone, limest	sand. Gravel is one, brick		
Final Depth: 0.20m							1. Tria	I Pit hand excavated fr				
FACE B Width (m) 0.30	•	FAI Leng 0.	40			FACE D	 2. Trial pit terminated at 0.20m depth due to presence of asbestos. Trial pit cancelled with engineer's agreement. 3. No groundwater encountered. 4. All sides stable. 5. Photgraphs taken of side faces and spoil. 6. Trial pit backfilled on completion. 					
L		FACE C					1					
		FACE C						Release Status: Final				

COSTAIN		Contract N			naven	FAS		Client: Aberdeer	nshire Council	Trial Pit ID:
		Contract N		er: 14	Date	Started: 05/11/20)13	Logged By: PS	Checked By: MJB	TP2
Environmental S		Easting:	54		Nort		/15	Ground Level:	Plant Used:	Sheet 1 of 1 Scale:
Trial Pit Lo	g	3	887:	310.6		785749	.0	4.42	Hand Tools	1:50
Samples & In S	Situ Test	tina	5					Strata Del	ails	
Sample ID	Test R		Water	Reduced Level	Legend	Depth (m) (thickness)		Oliala Del	Strata Description	Back
·	100111	looun				(0.30)	MADE	GROUND. Dark brown	slightly gravelly fine to coarse ine to coarse of sandstone. (1	e sand. Gravel
0.30 D1 0.30-0.80 LB2 0.80 D3 0.80-1.00 B4 1.00 D5 1.00-1.60 LB6				4.12 3.62 3.42		0.30 (0.50) 0.80 1.00 (0.60)	conten concre and co betw depth of 0.30 MADE	it. Gravel is angular to s tet and sandstone. Cobi oncrete. ween 0.60m depth, to th in the southern edge of m width. GROUND. Reddish bro	elly fine to coarse sand with n ubangular fine to coarse of br oles are angular to subangula ne northern edge of the pit, to the pit, sloping rough concret pown clayey gravelly fine to coa	ick, r of brick 0.80m e footing urse sand.
				2.82		1.60	MADE fine to litholog	ite and mixed lithologies GROUND. Reddish bro coarse gravel of sandst	own slightly clayey sandy angutone, quartzite, brick and mixed mix	ular to rounded
- - Dimensions:							Gene	ral Remarks:		
Final Depth: 1.60m							1. Trial	Pit hand excavated from	m GL to 1.60m. Terminated d	ue to boulder
FACE B Midth (m) 0.50	۔۔۔ اب	 Leng 	50			FACE D	 No g All si Phot 	ruction with engineer's a roundwater encountere ides stable. graphs taken of side fac pit backfilled on comple	d. ces and spoil.	
		FACE C								
		FA	CE C							

CODTEN		Contract N		Stoneł	naver	n FAS	S	Client:	perdeen	shire Council	Trial Pit ID:					
COSTAIN	-	Contract N	Numb	er:	Da	ate Starteo	d:	Logged By:		Checked By:	TP3					
Environmental Se	ervices		54	14		24/	10/201	3	PS	MJB	Sheet 1 of 1					
Trial Pit Log		Easting:			No	orthing:		Ground Leve		Plant Used: Hand Tools	Scale:					
		3	8872	293.2		78	35766.0	4	.40		1:50					
Samples & In S	itu Testi	ng	er				Strata Details									
Sample ID	Test Re	-	Water	Reduced Level	Legen	d Dep (thic	oth (m) kness)			Strata Description	Ba					
0.10 D1 0.20 D2				4.33 4.30		¥ 0										
0.20 D2 0.20-0.80 LB3				4.20		8 0	.20	\	-	own fine to coarse sand.	/					
				3.60		8 <u> </u>	.80	MADE GROUND. to rounded fine to and limestone.	Brown gravel coarse of mix	lly fine to coarse sand. Grav ced lithologies including san	el is subangular dstone					
-								MADE GROUND.	Brown sandy	angular to subangular fine tet and mixed lithologies wit	to coarse gravel					
								cobble and boulde	r content. Co	bbles and boulders are sub and mixed lithologies.	angular to					
								at 0.35m depth.	base of river	r wall exposed. 2 no. boulde tely below base of wall, pos	rs from					
								utilised as a footin base of wall.	g. Boulders e	extend 0.20m out into trial pit	t from					
								End of Trial Pit a	t 0.80 m		i					
-																
_																
imonoiono:								General Rema	rko							
Dimensions: Final Depth: 0.80m										GL to 0.80m. Terminated d	lue to underminina					
			CE A	~)			2	of river wall with Difficult excavation	engineer's a on 0.00m to 0	greement.).80m - 2.5 hours.	5					
4		– Leng 0.	jtn (r 80	···)		-	3	. No groundwater . All sides stable.	encountered.							
							5	Photgraphs take Trial pit backfille	n of side face d on complet	es and spoil. ion.						
↑									,							
\sim		Orienta	tion:	-			D									
се в h (m) 40							FACE									
FACE B Width (m) 0.40	'∢						1									
FACE B — Width (m) 0.40	'∢															
FACE B Midth (m) 0.40	'∢															
FACE B Midth (m) 0.40	'◀		CEC													

COSTAIN		Contract I			naven	FAS		Aberdee	nshire Council	Trial Pit ID:				
		Contract I		er: 14	Date	• Started: 05/11/20)13	Logged By: PS	Checked By: MJB	TP4				
Environmental Se	ervices	Easting:			Nort	hing:		Ground Level:	Plant Used:	Sheet 1 of 1 Scale:				
Trial Pit Log			387 ⁻	143.1		785687	<i>.</i> 2	5.57	Hand Tools	1:50				
	(•	1.	I			Strata Details							
Samples & In Si			Water	Reduced	Legend	Depth (m) (thickness)		Strata De	Strata Description	Bac				
Sample ID	Test R	esult	-	Level			MADE	GROUND. Brown clay	rey fine to coarse sand.					
0.20 D1 0.20-0.50 LB2 0.50 D3 0.50-1.20 LB4				5.37 5.07		0.20 (0.30) 0.50	0.20 (0.30) MADE GROUND. Dark brown slightly clayey slightly gravelly fine to							
				4.37		(0.70)	Gravel quartz	is subangular to round ite and mixed igneous l	o coarse SAND with high cobb led fine to coarse of sandstone lithologies. Cobbles are subang ite and mixed igneous lithologi	e, gular to				
) Dimensions: Final Depth: 1.20m							1. Trial	ral Remarks: Pit hand excavated fro pit complete upon sch						
FACE B Width (m) 0.30		— Leng	30	n) ——		FACE D	 3. No g 4. All si 5. Phot 	pit complete encountere des stable. graphs taken of side fa pit backfilled on compl	ed. ces and spoil.					
↓ ↓														

COSTAIN	Contra	ct Name		naven	FAS		Aberdee	nshire Council	Trial Pit ID:			
		ct Numb	^{er:} 14	Date	Started: 29/10/20)13	Logged By: PS	Checked By: MJB	TP5			
Environmental Se	Easting	J:		North	ning:		Ground Level:	Plant Used:	Sheet 1 of 1 Scale:			
Trial Pit Log		387	016.4		785651	.4	9.68	Hand Tools	1:50			
Samples & In Si	itu Testing	er				Strata Details						
Sample ID	Test Result	Water	Reduced Level	Legend	Depth (m) (thickness)			Strata Description		Back		
0.10 D1 0.10-0.50 LB2					(0.50)	MADE is ang	GROUND. Dark brow ular to subangular fine	n slightly gravelly fine to coarse to coarse of sandstone.	e sand. Gravel			
0.50 D3 0.50-1.30 LB4			9.18		0.50 (0.80)	conter	nt. Gravel is subangula	r fine to coarse SAND with low r to rounded fine to coarse of s ubangular to subrounded of qu	sandstone			
1.30 D5 1.30-1.50 B6			8.38 8.18		1.30 1.50	Brown gravelly fine to coarse SAND with high cobble content. Gravel						
-						·····	of Trial Pit at 1.50 m	jies.				
-												
-												
-												
-												
Dimensions:						Gene	ral Remarks:					
Final Depth: 1.50m						1. Tria	I Pit hand excavated fro	om GL to 1.50m. Terminated d	lue to boulder			
•	Le	FACE A ngth (1 0.40				 No g All s Phot 	ruction with engineer's roundwater encounter ides stable. graphs taken of pit and	ed. I spoil.				
▲						5. Trial	pit backfilled on comp	ietion.				
					D							
FACE B Width (m) 0.40	Orien	itation:			FACE							
FACE B Midth (m) 0.40	Orien	itation:	-		FAC							

COETLU		Contract N			aven	FAS		Client: Aberdee	nshire Council	Trial Pit ID:				
COSTAIN		Contract N			Date	Started:	12	Logged By:	Checked By:	TP6				
Environmental Se	ervices	Easting:	54	14	North	19/10/20	//3	MJB Ground Level:	Plant Used:	Sheet 1 of 1 Scale:				
Trial Pit Log		_	870	016.9	North	785649	Hand Tools							
			1	1			Strata Details							
Samples & In S			Water	Reduced Level	Legend	Depth (m) (thickness)		Strata De			Back			
Sample ID	Test R	esult	-	Level		(thickness)	Strata Description MADE GROUND. Brown silty gravelly fine to medium sand, with medium cobble content. Gravel is angular, fine to coarse of mixed lithologies. Cobbles are subangular of mixed lithologies.							
0.30 D1 0.30-0.70 LB2				5.86		(1.40)		of Trial Pit at 1.40 m	ingular of mixed lithologies.					
Dimensions:								ral Remarks:	m CL to 1 40m. Torminated di	in the trace read				
Final Depth: 1.40m		 Leng 	50	n) ——		FACE D	obsi 2. No g 3. All s 4. Pho	I Pit hand excavated fro truction with engineer's groundwater encountere ides stable. tgraphs taken of pit and I pit backfilled on compl	ed. spoil.	je to tree root				
L		FA	CE C											
Inclination: 90							Relea	ase Status: Final						

Control Number Environmental Services Sati 4 Device Services Trial Pit Log 338822.4 735633.6 9.9.4 Hand Tools Samples & In Situ Testing Image: Service Ser	COSTAIN		Contract N			aven	FAS		Client: Aberdee	nshire Council	Trial Pit ID:				
Lenvin Uniter in the second formation in the second formati	GOOTAIN		Contract N			Date					TP7				
Trial Pit Log 386928.4 785638.6 9.94 Hand Tools 1:50 Samples & In Situ Testing # # Strata Details # # Supples & In Situ Testing # # # # # # U.20:0.50 B2 #	Environmental Se	ervices		54	14			13							
Sample D Test Result P 0.20 D1 0.20.050 B2 0.41 9.40 0.53 0.54 MADE GROUND Red sity very gravely fine sampler in the costre of made ignores. Introduced. Inset to costre of made ignores. Introduced in the costre of made ignores. Introduced in the costre of made ignores. Introduced in the costre of made ignores. Introduced is anything in the costre of made introduced incostre. I sampler in the costre of made introduced incostre. I sampler in the costre of made introduced incostre. I sampler in the costre of made introduced incostre introduced incostre. I sampler in the costre of made introduced incostre of the costre of the costre of the cost interview engineer is anythic. I sampler in the cost of the cost interview engineer is anything in the cost of the cost of the cost interview engineer is anything in the cost of the cost of the cost is anything in the cost of the cost of the cost of the cost is anything in the cost of the cost of the cost of the cost is anything in the cost of the cost of the cost of the cost is anything in the cost of the cost of the cost of the cost is anything in the cost of the cost of the cost of the cost is anything in the cost of the cost of t	Trial Pit Log		-	8869	928.4	North	-	.6							
Sample D Test Result S Proceed Component 0.20 D1 0.24:0.50 B2 0.41 9.40 0.53 9.41 9.40 (0.53) 0.54 (0.53) 0.54 MADE GROUND. Rud sity very granely fine same thir foquent ingenus lithologies. 0.20 D1 0.24:0.50 B2 9.41 9.40 0.53 9.54 (0.53) 0.54 (0.53) 0.54 0.51 0.54 9.41 9.40 0.53 0.54 (0.53) 0.54 (0.53) 0.54 0.51 0.54 0.54 (0.53) 0.54 (0.53) 0.54 (0.53) 0.54 0.51 0.52 0.54 (0.53) 0.54 (0.53) 0.54 (0.53) 0.54 0.51 0.52 0.54 (0.53) 0.54 (0.53) 0.54 (0.53) 0.54 0.51 0.52 0.54 (0.53) 0.54 (0.54) 0.54 (0.54) 0.54 0.51 0.51 0.54 (0.54) 0.54 (0.54) 0.54 (0.54) 0.54 0.52 0.54 1.30 (0.54) 0.54 (0.54) 0.54 0.52 0.54 (0.54) 0.54 (0.54) 0.54 (0.54) 0.54 0.54 1.30 (0.54) 0.54 (0.54) 0.54 (0.54)	Samplas 8 In Si	itu Toot	ina					Strata Details							
Dimensions: Ceneral Remarks: Image: State S			-	Wate	Reduced	Legend	Depth (m)		Strata De		Ba				
0.20-0.50 B2 9.40 0.037 9.40 improvisitilitologies. 0.54		Test R	esult		Level			MADI	E GROUND. Red silty v	erv gravelly fine sand with frequ	uent				
Vimensions: Ceneral Remarks: inal Depth: 0.54m 1.30 FACE A Ying public state of the second structure 1.30 Trial Pit hand excave for QL to U54m. Terminated due to obstruction Wing public state of the second structure 1.30	0.20 DT 0.20-0.50 B2						0.53	igneo	us lithologies. 0.50m depth. tarmacad	am obstruction (25mm thick) e	xtending				
imensions: General Remarks: imensions: General Remarks: inclusion: 1.30					9.40		0.54	1			i				
Final Depth: 0.54m FACE A Length (m) 1.30 FACE A Length (m) 1.30 I. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion.								litholo	ogies (road base).	5					
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. No groundwater encountered. All sides stable. Photgraphs taken of side faces and spoil. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. No groundwater encountered. All sides stable. Photgraphs taken of side faces and spoil. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. No groundwater encountered. All sides stable. Photgraphs taken of side faces and spoil. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion. 															
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion. 															
FACE A FACE A Length (m) Image: A line of the second s															
 inal Depth: 0.54m FACE A Length (m) 1.30 1. Trial Pit hand excavated from GL to 0.54m. Terminated due to obstruction with engineer's agreement. 2. No groundwater encountered. 3. All sides stable. 4. Photgraphs taken of side faces and spoil. 5. Trial pit backfilled on completion. 															
FACE A Length (m) 1.30 FACE A Length (m) FACE A Solution (m) FACE A Sol	imensions:														
Orientation: - Budget Guide Guide Guide Budget Guide Budget Guide Budget Guide Budget Guide Budget Guide Budget Guide Budget Guide	ïnal Depth: 0.54m ◀		 Leng 	gth (r	n)			with 2. No 3. All s 4. Pho	n engineer's agreement. groundwater encounter sides stable. otgraphs taken of side fa	ed. aces and spoil.	ue to obstruction				
	FACE B Midth (m) - 0.50	'∢	Orienta	tion:	-		FACE D								
FACE C Release Status: Final			FA	CE C											

COSTAIN	Contract Name		naven	FAS		Client: Aberdeer	nshire Council	Trial Pit ID:		
Environmental Services	Contract Numb	^{ber:}	Date	Started: 22/10/20)13	Logged By: MJB	Checked By: MJB	Sheet 1 of 1		
Trial Pit Log	Easting:	032.2	North	^{ing:} 785636	.0	Ground Level: 8.00	Plant Used: Hand Tools	Scale: 1:50		
Samples & In Situ Test	ing Mater			Strata Details						
Sample ID Test R	esult	Reduced Level	Legend	Depth (m) (thickness)			Strata Description		Backfi	
0.20 D1 0.20-0.40 B2		7.94 7.60		0.06 (0.34) 0.40	MADE round bet Exten End C	ed fine to coarse of mixe ween 0.06m and 0.40m ne and concrete step.	elly fine to coarse sand. Graved lithologies. depth, rough concrete extend n kerbline, 300mm width con	ls between		
Dimensions: Final Depth: 0.40m					1. Tria	I Pit hand excavated fror	m GL to 0.40m. Terminated	due to concrete		
FACE B 0.32 0.32	FACE # - Length (1.10 Orientation	(m)		FACE D	2. Diffi 3. No (4. All s 5. Pho	truction with engineer's a cult excavation 0.00-0.4(groundwater encounterer ides stable. tgraphs taken of side fac l pit backfilled on comple	Dm - 2 hours. d. ces and spoil.			

COCTAIN	Contract Name	Stoneha	ven FA	AS		Client: Aberdeen:	shire Council	Trial Pit ID:
COSTAIN	Contract Numb		Date Star		40	Logged By:	Checked By:	TP9
Environmental Services	D4 Easting:	14	∠ Northing:	6/10/20	13	PS Ground Level:	MJB Plant Used:	Sheet 1 of 1 Scale:
Trial Pit Log		054.0	_	785632	.3	8.10	Hand Tools	1:50
Samples & In Situ Test	ing to the second se					Strata Deta	ails	
Sample ID Test R	<a l<="" td=""><td>Reduced Le</td><td>egend (t</td><td>epth (m) hickness)</td><td></td><td>Olidid Doli</td><td>Strata Description</td><td>Bac</td>	Reduced Le	egend (t	epth (m) hickness)		Olidid Doli	Strata Description	Bac
- 0.06 D1 - 0.06-0.40 LB2		8.04	XX	0.06 (0.34)	<u> </u>	GROUND. Asphalt.		
		7.70		0.40	sandst at 0 Extend betw kerblin	one, brick and mixed ign .15m depth, 0.65m from Is to base of pit.	vangular to rounded fine to o leous lithologies. kerbline, 300mm width conc epth, rough concrete extends	rete step.
-								
Dimensions:					ral Remarks:			
Final Depth: 0.40m	FACE A — Length (r 1.75		•	FACE D	obstr 2. Diffic 3. No gr 4. All si 5. Phote	Pit hand excavated from ruction with engineer's ag uit excavation 0.00m-0.4 roundwater encountered des stable. graphs taken of side face pit backfilled on complet	0m depth - 2 hours. es and spoil.	ue lo concrete
Inclination: 90	FACE C				Relea	se Status: Final		

	Contract Name	Stoneha	aven	FAS			nshire Council	Trial Pit ID:
COSTAIN	Contract Numb			Started:		Logged By:	Checked By:	
Environmental Service	5/	114	Duito	31/10/20	13	PS	MJB	Sheet 1 of 1
Trial Pit Log	Easting: 3872	211.5	North	^{ing:} 785707.	.6	Ground Level: 5.85	Plant Used: Hand Tools	Scale: 1:50
Samples & In Situ Tes	tina 5					Strata De	tails	
•	ting	Reduced Level	Legend	Depth (m) (thickness)			Strata Description	Back
0.10 D1 0.10-0.60 LB2		5.79		0.06	MADE	GROUND. Asphalt.		/
0.60 D3 0.60-1.40 LB4		5.25		(0.54) 0.60 (0.80)	conten limesto subano betv trial pit	It. Gravel is angular to sone, brick, asphalt, cera gular to subrounded of ween 0.30m and 0.60m	n gravelly fine to coarse sand w subangular fine to coarse of amics and pottery. Cobbles are brick and concrete. depth, wall footing. Extends 0	e 0.05m into
1.40 D5 1.40-1.70 B6		4.45		1.40 (0.30) 1.70	rounde litholog Brown sandst subang	ed fine to coarse of san gies. (Possible Made G very sandy subangular tone and guartz with me	dstone, quartzite and mixed ig	AVEL of
-								
limensions:					Gene	ral Remarks:		
Final Depth: 1.70m	FACE A — Length (I 0.70				obstr 2. No g 3. All si 4. Phote	Pit hand excavated fro ruction with engineer's roundwater encountere des stable. graphs taken of pit and pit backfilled on compl	ed. spoil.	ue to boulder
FACE B Width (m) -0.45	Orientation:	: -		FACE D				
	FACE C							

COCTUN	Contract Na	^{ame:} Stoneł	naven	FAS		Client: Aberdeer	nshire Council	Trial Pit ID:				
COSTAIN	Contract Nu		Date	Started:		Logged By:	Checked By:					
Environmental Servi	ICES	5414		29/10/20)13	PS	MJB	Sheet 1 of 1				
Trial Pit Log	Easting:	37269.3	North	785739	.2	Ground Level: 4.94	Plant Used: Hand Tools	Scale: 1:50				
Samples & In Situ 1	Testing	er			Strata Details							
	Fest Result	Kate Reduced Level	Legend	Depth (m) (thickness)			Strata Description	Back				
0.10 D1 0.10-1.00 LB2		4.88		0.06	MADE	GROUND. Asphalt.						
1.00 D3 1.00-1.70 LB4		3.94		(0.94) 1.00 (0.70)	to coa litholo from to roum bet trial pi from subrom	rse gravel of sandstone gies. m 0.20m depth, with low nded of quartzite and mi ween 0.30m and 0.60m t. m 0.60m depth, with hig unded to rounded of sar	ntly clayey sandy subangular to , quartzite and mixed igneous v cobble content. Cobbles are ixed igneous lithologies. depth, wall footing. Extends C h cobble content. Cobbles are dstone, quartzite and mixed ig	subrounded 0.10m into				
		3.24		1.70	litholo Reddi mixed rounde	gies. sh brown sandy subrour	nded to rounded fine to coarse bble content. Cobbles are sub	GRAVEL of				
Dimensions:					Gene	ral Remarks:						
Final Depth: 1.70m					1. Tria	I Pit hand excavated from	m GL to 1.70m. Terminated w	rith engineer's				
▲	FAC Lengtl	h (m) ——	→		2. No g 3. All s 4. Phot	eement. groundwater encountere ides stable. Igraphs taken of pit and I pit backfilled on comple	spoil.					
FACE B → Width (m) 0.40	Orientation	on: -		FACE								

COSTAIN		Contract			naven	FAS		Client: Aberdeer	nshire Council	Trial Pit ID:	_
Environmental S		Contract		er: •14	Date	Started: 18/10/20)13	Logged By: MJB	Checked By: PS	- TP1:	3
Trial Pit Log		Easting:	3869	976.0	North	^{iing:} 785469	.5	Ground Level: 14.29	Plant Used: Hand Tools	Sheet 1 of 1 Scale: 1:50	
Samples & In S	Situ Test	ina	5					Strata Det	ails		
Sample ID	Test R		Water	Reduced Level	Legend	Depth (m) (thickness)		0.000 2.00	Strata Description		Bac
				40.00		(0.30)	Soft bl to coa	ack very gravelly CLAY.	Gravel is angular to subroun (Topsoil).	ded, fine	
0.40 D1 0.40-0.80 B2				13.99		0.30 (0.50)	Soft re		ry sandy CLAY. Gravel is sub		
0.90 D3 0.90-1.20 LB4				13.49 12.59		0.80 (0.90) 1.70	conter litholo litholo	nt. Gravel is angular to w gies. Cobbles are subar gies.	ne to medium SAND, with hig rell rounded fine to coarse of igular to well rounded of mixe	mixed	
Dimensions:							Gene	ral Remarks:			
Final Depth: 1.70m	•	— Leng	ce a gth (r 80	n) ——			obst 2. No g 3. All s 4. Phot	Pit hand excavated fror ruction with engineer's a roundwater encountered ides stable. graphs taken of pit and pit backfilled on comple	d. spoil.	ue to boulder	
A Midth (m) − 0.50	'∢-	Orienta	tion:	-		FACE D					
		FA	CE C				L				
								se Status: Final			

Appendix 5 - Photographs

Appendix 5.1 – Rotary Core Photographs

COSTAIN	Contract ID:	5414	Borehole ID:	BH05
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	10.50m – 12.00m

COSTAIN	Contract ID:	5414	Borehole ID:	BH05
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	12.00m – 13.50m

	Contract ID:	5414	Borehole ID:	BH06
COSTAIN	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.00m – 10.00m

COSTAIN	Contract ID:	5414	Borehole ID:	ВН07
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	4.00m – 6.50m

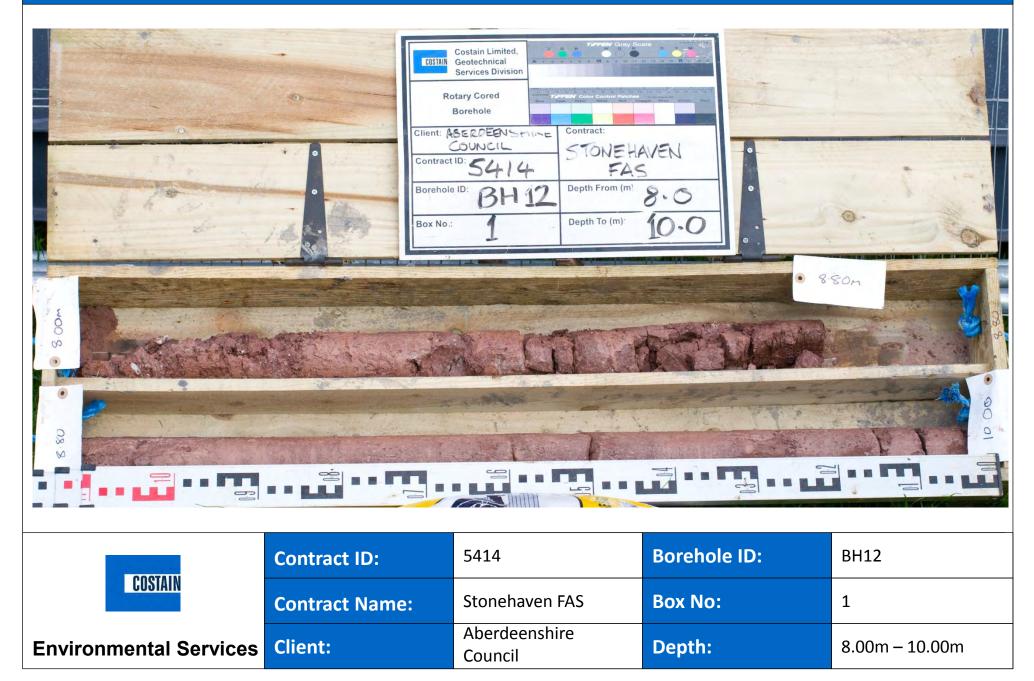
COSTAIN	Contract ID:	5414	Borehole ID:	BH07
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	6.50m – 8.00m

	Contract ID:	5414	Borehole ID:	BH07	
COSTAIN	Contract Name:	Stonehaven FAS	Box No:	3	
Environmental Services	Client:	Aberdeenshire Council	Depth:	8.00m –9.00m	

	Contract ID:	5414	Borehole ID:	BH08
COSTAIN	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	5.00m – 7.50m

COSTAIN	Contract ID:	5414	Borehole ID:	BH08
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	7.50m – 9.00m

COSTAIN	Contract ID:	5414	Borehole ID:	BH08
	Contract Name:	Stonehaven FAS	Box No:	3
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.00m – 10.50m


COSTAIN	Contract ID:	5414	Borehole ID:	BH11A
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	5.00m – 7.20m

COSTAIN	Contract ID:	5414	Borehole ID:	BH11A
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	7.20m – 9.00m

COSTAIN	Contract ID:	5414	Borehole ID:	BH11A
	Contract Name:	Stonehaven FAS	Box No:	3
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.00m – 10.00m

COSTAIN	Contract ID:	5414	Borehole ID:	BH13
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.00m – 10.00m

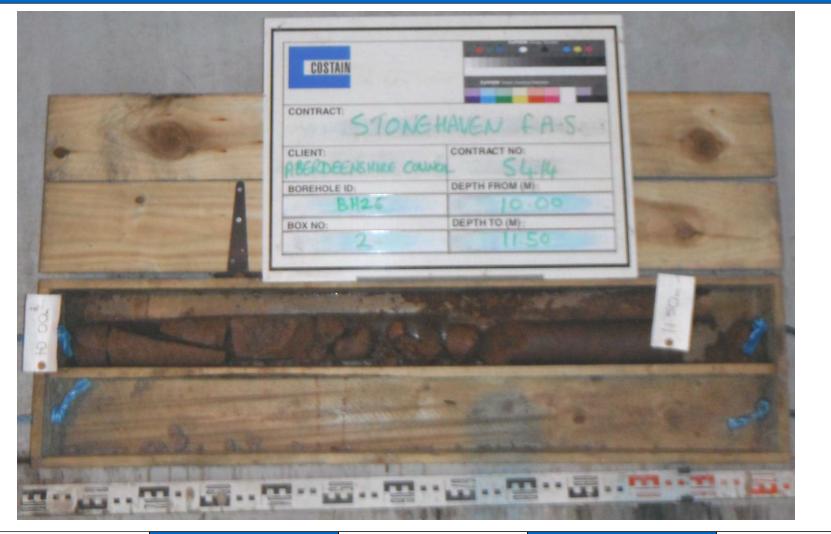
COSTAIN	Contract ID:	5414	Borehole ID:	BH14
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	4.80m – 7.50m

and the second	Contract ID:	5414	Borehole ID:	BH15
COSTAIN	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	5.00m – 7.50m

COSTAIN	Contract ID:	5414	Borehole ID:	BH15
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	7.50m – 9.80m

COSTAIN	Contract ID:	5414	Borehole ID:	BH15
	Contract Name:	Stonehaven FAS	Box No:	3
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.80m – 11.70m

COSTAIN	Contract ID:	5414	Borehole ID:	BH15
	Contract Name:	Stonehaven FAS	Box No:	4
Environmental Services	Client:	Aberdeenshire Council	Depth:	11.70m – 13.60m


Depth:

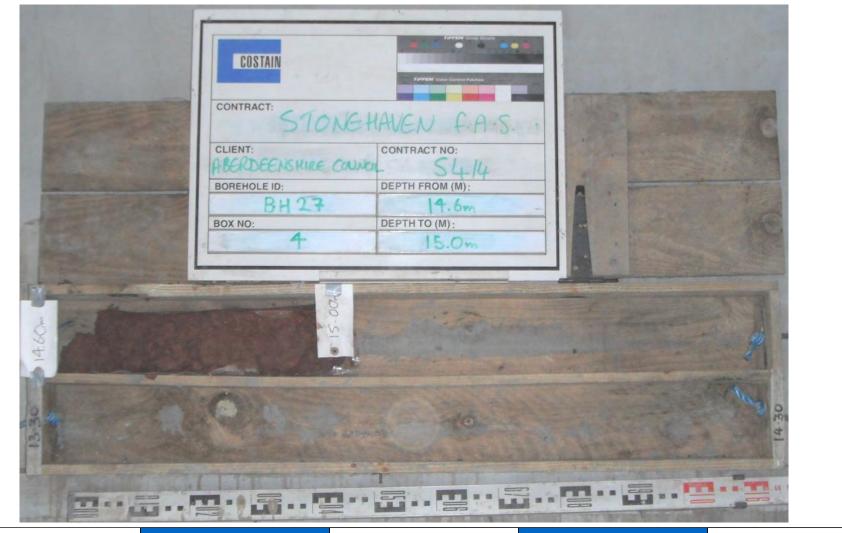
7.50m – 10.00m

Environmental Services Client: Council

COSTAIN	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	7.50m – 10.00m

COSTAIN	Contract ID:	5414	Borehole ID:	BH26
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	10.00m – 11.50m

COSTAIN	Contract ID:	5414	Borehole ID:	BH26
	Contract Name:	Stonehaven FAS	Box No:	3
Environmental Services	Client:	Aberdeenshire Council	Depth:	11.50m – 13.00m


COSTAIN	Contract ID:	5414	Borehole ID:	BH27
	Contract Name:	Stonehaven FAS	Box No:	1
Environmental Services	Client:	Aberdeenshire Council	Depth:	9.00m – 10.50m

COSTAIN	Contract ID:	5414	Borehole ID:	BH27
	Contract Name:	Stonehaven FAS	Box No:	2
Environmental Services	Client:	Aberdeenshire Council	Depth:	10.50m – 12.50m

COSTAIN	Contract ID:	5414	Borehole ID:	BH27
	Contract Name:	Stonehaven FAS	Box No:	3
Environmental Services	Client:	Aberdeenshire Council	Depth:	12.50m – 14.60m

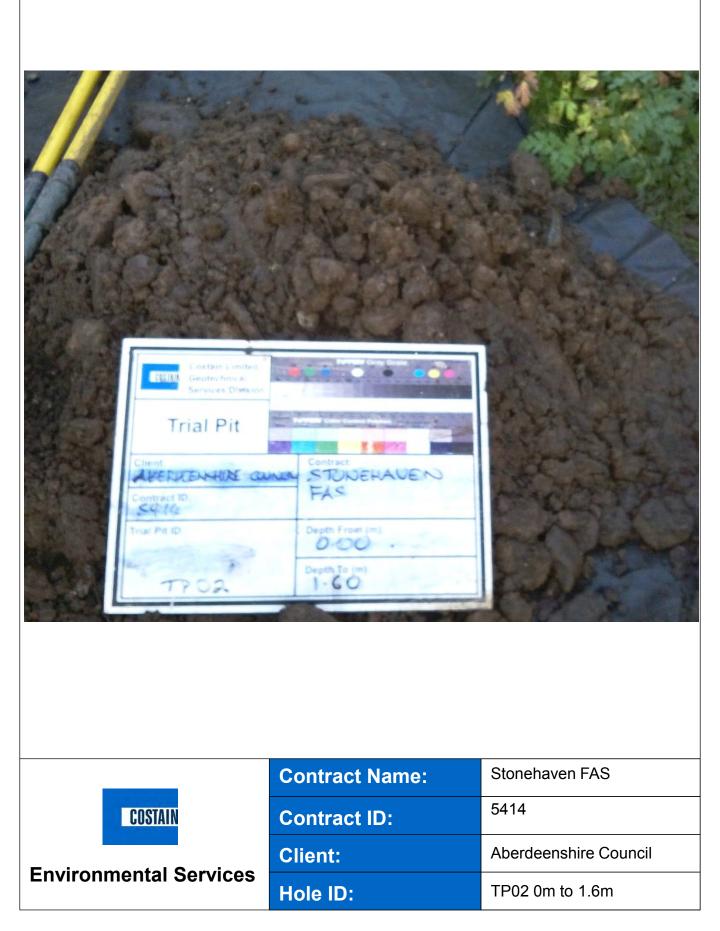
COSTAIN	Contract ID:	5414	Borehole ID:	BH27
	Contract Name:	Stonehaven FAS	Box No:	4
Environmental Services	Client:	Aberdeenshire Council	Depth:	14.60m – 15.00m



Appendix 5.2 – Observation Pit Photographs



			Contract Name:	Stonehaven FAS
	COSTAIN		Contract ID:	5414
Environmental Services	Client:	Aberdeenshire Council		
Environ	imental	Services	Hole ID:	TP CDR2. 0m to 1.5m

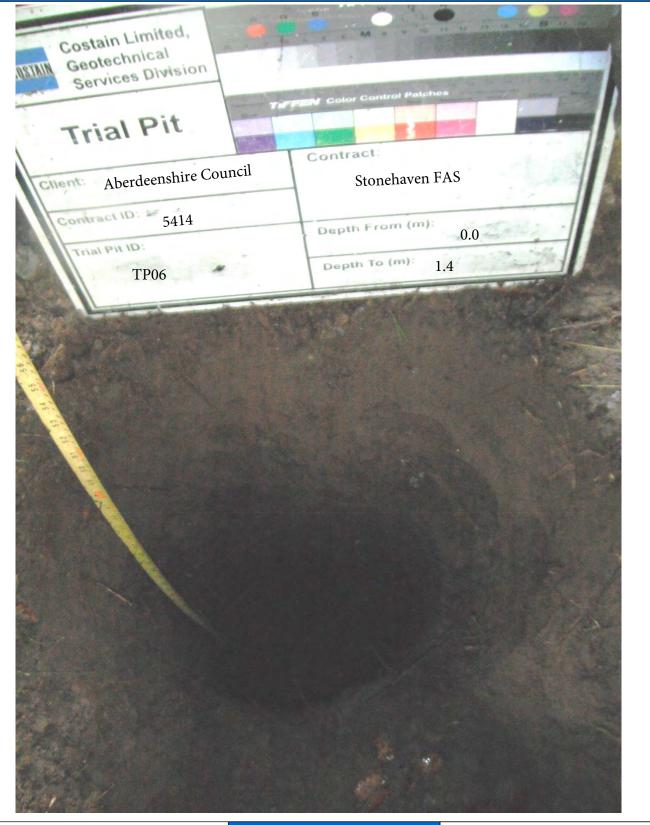

		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
		Client:	Aberdeenshire Council
Environ	mental Services	Hole ID:	TP01 0m to 0.2m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP01 0m to 0.2m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Service	Hole ID:	TP02 0m to 1.6m

		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
Environmental Services		Client:	Aberdeenshire Council
		Hole ID:	TP03 0m to 0.8m

		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
F using a		Client:	Aberdeenshire Council
Environmental Services		Hole ID:	TP03 0m to 0.8m

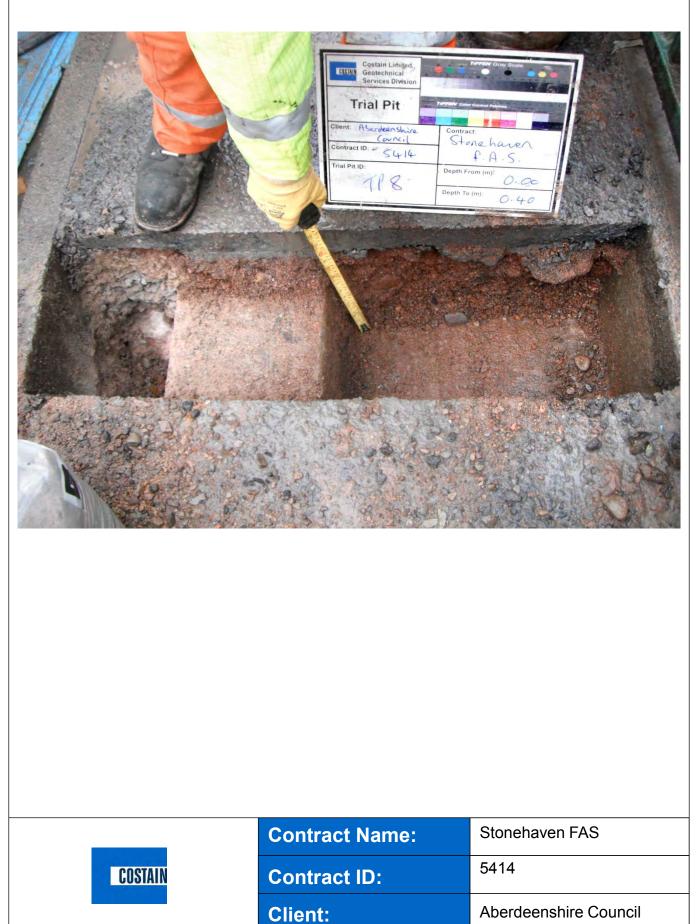

		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
Environmental Services		Client:	Aberdeenshire Council
		Hole ID:	TP04 0m to 1.2m

	Costain Limited, Geotrophical Services Division		
	maren	Contract: STONEHAVEN	
	Contract ID SY ID Trial Pit ID	FAS	
	TP04	Depth From (m): Depth To (m): 1-20	
			SAL.
and the second		had a	TR
Charles 1		C.S.	光夏
		¢ 6	1
A CALL THE REAL			1

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP04 0m to 1.2m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Service	Hole ID:	TP05 0m to 1.5m

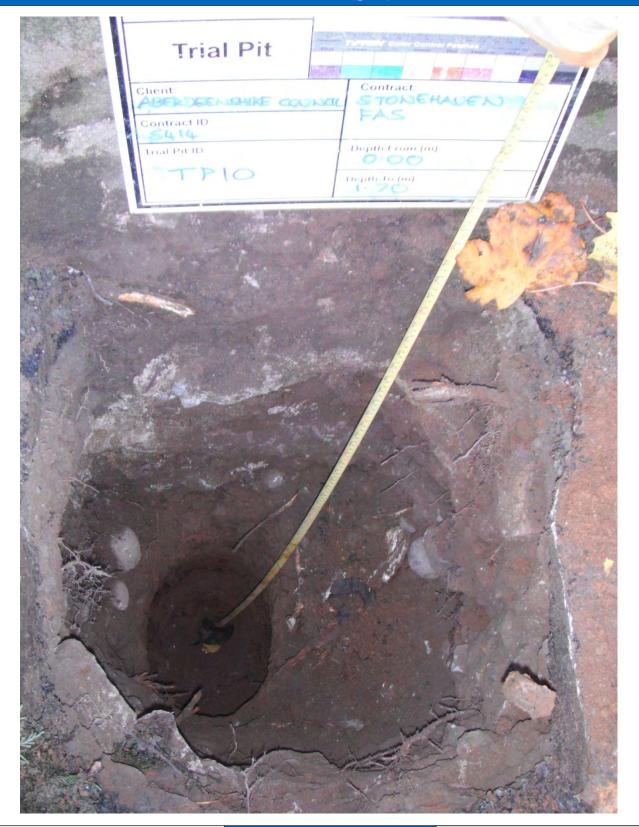
	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP06 0m to 1.4m


		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
		Client:	Aberdeenshire Council
EUVILOU	mental Services	Hole ID:	TP06 0m to 1.4m

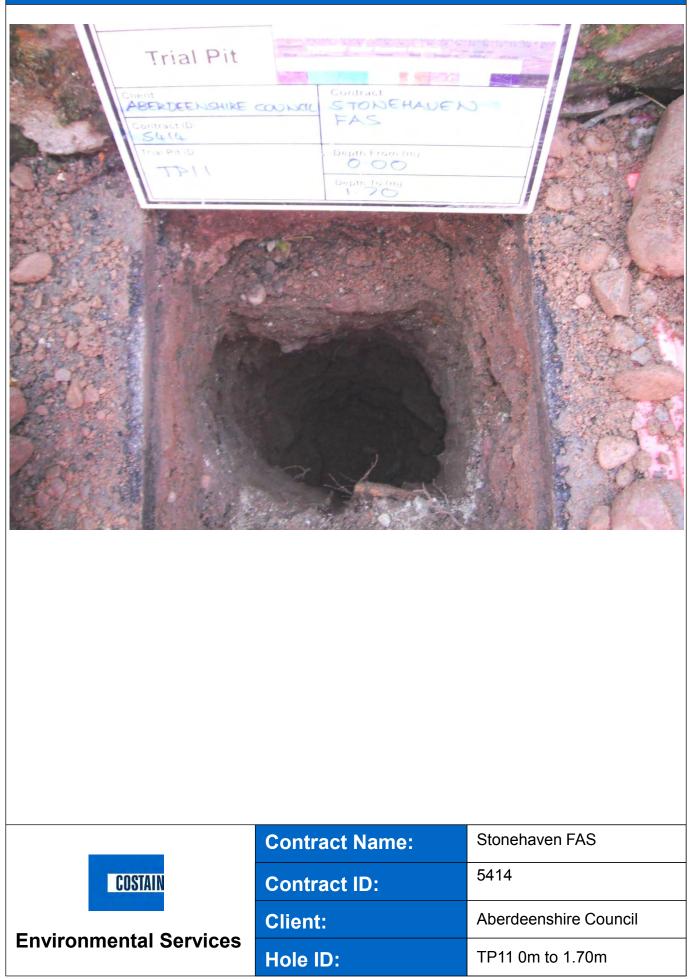
		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
-		Client:	Aberdeenshire Council
Environmental Services		Hole ID:	TP07 0m to 0.54m

		Contract Name:	Stonehaven FAS
COSTAIN		Contract ID:	5414
Environmental Services		Client:	Aberdeenshire Council
		Hole ID:	TP07 0m to 0.54m

Environmental Services Hole ID:


TP08 0m to 0.40m

		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
		Client:	Aberdeenshire Council
Environ	mental Services	Hole ID:	TP09 0m to 0.40m


	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP09 0m to 0.40m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP10 0m to 1.70m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP10 0m to 1.70m

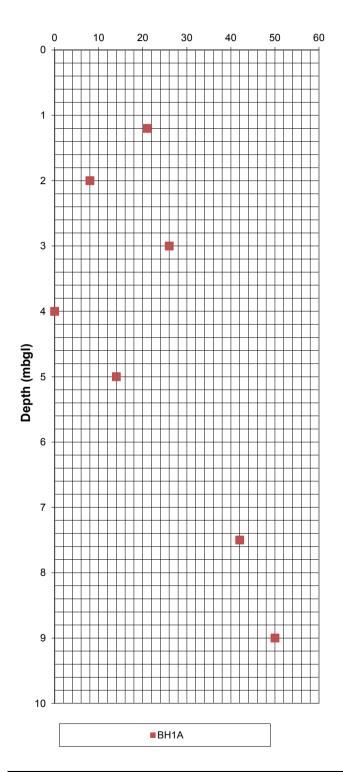
		Contract Name:	Stonehaven FAS
	COSTAIN	Contract ID:	5414
Environmental Services		Client:	Aberdeenshire Council
		Hole ID:	TP11 0m to 1.70m

414 Contract: 414 Depth From (m): 0.0	
Contract Name:	Stonehaven FAS

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP13 0m to 1.70m

	Contract Name:	Stonehaven FAS
COSTAIN	Contract ID:	5414
	Client:	Aberdeenshire Council
Environmental Services	Hole ID:	TP13 0m to 1.70m

Appendix 6 - In Situ Test Results



Appendix 6.1

Appendix 6.1 - SPT N Value Graphical Presentation & SPT Hammer Energy Measurement Report

SPT Vs Depth				Hole	BH1A		
Client	Aberdeens	hire Counc	il			Job No.	5414
Site	ite Stonehaven FAS			Date Drawn	06/01/2014		
Easting	387458.5	Northing	785756.2	G.L.	4.228	Energy Ratio	39.00%
						Hammer ID	

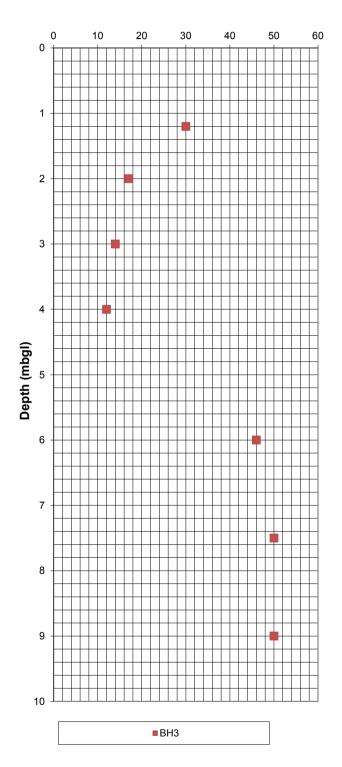
SPT N Value

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=21 (0,0,3,8,5,5)		
2.00	N=8 (1,1,3,2,2,1)		
3.00	N=26 (5,6,8,9,6,3)		
4.00	N=0 (0,0,0,0,0,0)		
5.00	N=14 (0,1,1,2,3,8)		
7.50	N=42 (4,9,10,10,10,12)		
9.00	50/203mm (5,8,20,17,13)		

Remarks

COSTAIN Environmental Services

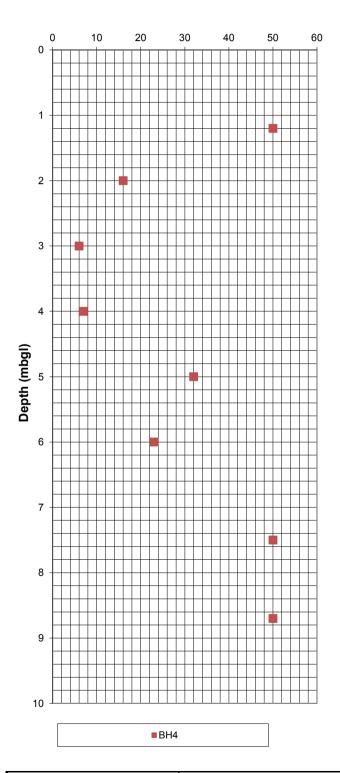
SPT Vs Depth			Hole	BH2			
Client	Client Aberdeenshire Council			Job No.	5414		
Site	Site Stonehaven FAS			Date Drawn	06/01/2014		
Easting	387409	Northing	785737.4	G.L.	3.433	Energy Ratio	74.00%
						Hammer ID	



Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=27 (4,4,4,12,6,5)		
2.00	N=5 (3,2,2,1,1,1)	1.50	
3.00	N=37 (14,11,10,10,10,7)	3.00	
4.00	N=9 (5,4,3,2,2,2)	3.00	
5.00	N=24 (8,2,5,5,5,9)	4.70	
6.50	50/100mm (15,12,25,25)	4.70	

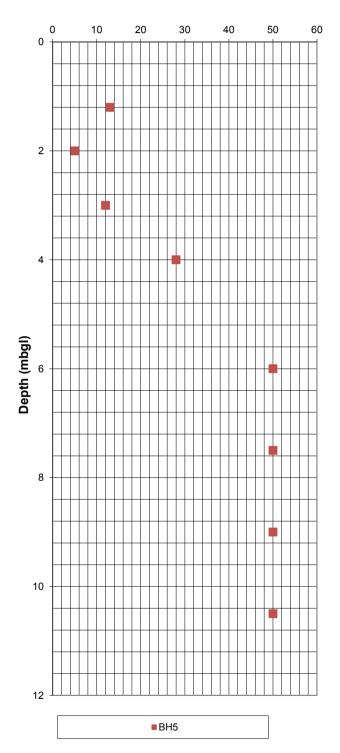
Remarks

COSTAIN Environmental Services


		SP	T Vs De	Hole	BH3		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387314.9	Northing	785746.4	G.L.	4.476	Energy Ratio	39.00%
						Hammer ID	

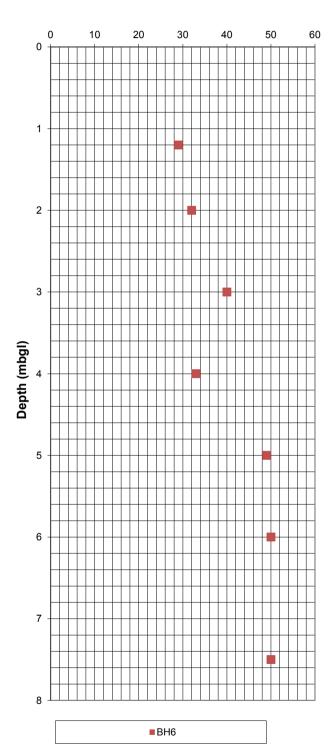
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=30 (5,5,7,7,7,9)		
2.00	N=17 (4,3,3,4,6,4)		
3.00	N=14 (0,0,1,1,4,8)		
4.00	N=12 (1,3,2,2,5,3)		
6.00	N=46 (4,9,10,11,12,13)		
7.50	50/225mm (2,8,16,16,18)		
9.00	50/145mm (13,12,28,22)		

Remarks


		SP	ΓVs De	Hole	BH4		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387300.2	Northing	785769.6	G.L.	4.332	Energy Ratio	39.00%
						Hammer ID	

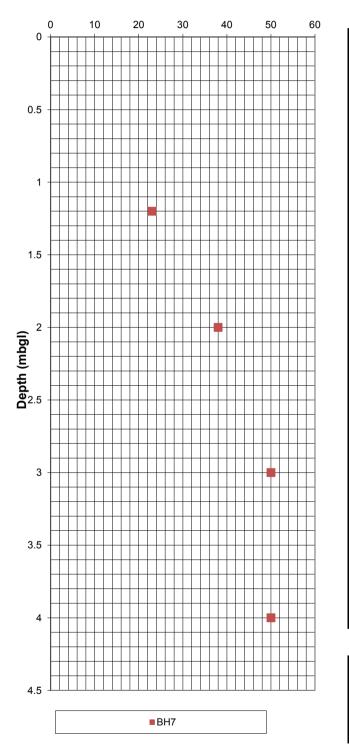
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=50 (8,9,12,15,13,10)		
2.00	N=16 (16,7,4,5,4,3)		
3.00	N=6 (11,6,2,1,1,2)		
4.00	N=7 (2,1,2,2,1,2)		
5.00	N=32 (11,10,7,8,8,9)		
6.00	N=23 (2,4,5,7,5,6)		
7.50	50/143mm (6,19,22,28)		
8.70	50/241mm (2,3,8,8,30,4)		

Remarks


		SP	ΓVs De	Hole	BH5		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehave	n FAS			Date Drawn	06/01/2014	
Easting	387263.1	Northing	785765.3	G.L.	4.655	Energy Ratio	39.00%
						Hammer ID	

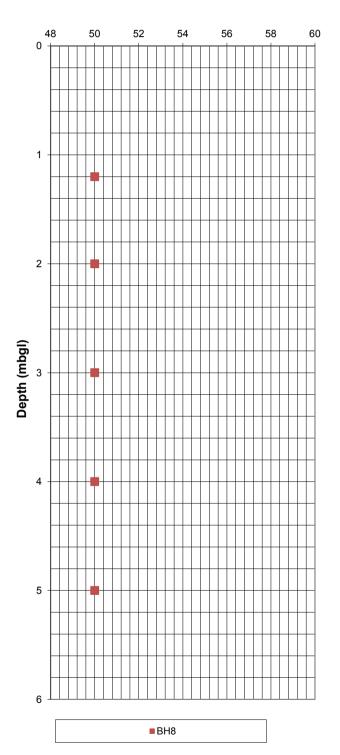
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=13 (2,3,2,2,5,4)		
2.00	N=5 (2,1,2,1,1,1)		
3.00	N=12 (0,2,1,2,3,6)		
4.00	N=28 (4,5,6,11,5,6)		
5.00	N=112 (1,3,10,81,11,10)		
6.00	50/277mm (3,8,11,14,15,10)		
7.50	50/194mm (7,15,18,22,10)		
9.00	50/219mm (6,12,9,10,31)		
10.50	50/75mm (19,6,50)		

Remarks


		SP	T Vs De	Hole	BH6		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387160.4	Northing	785698.2	G.L.	5.341	Energy Ratio	39.00%
						Hammer ID	

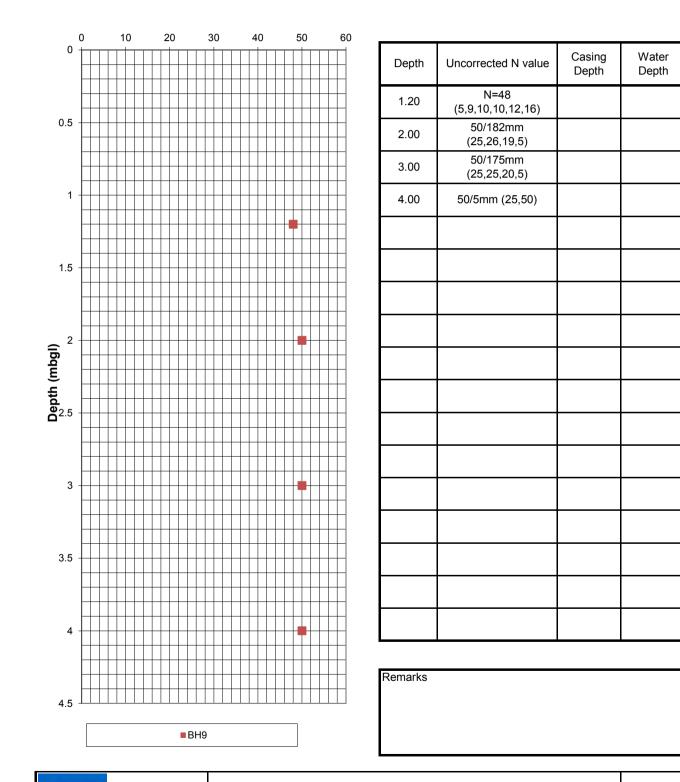
SPT	Ν	Value
-----	---	-------

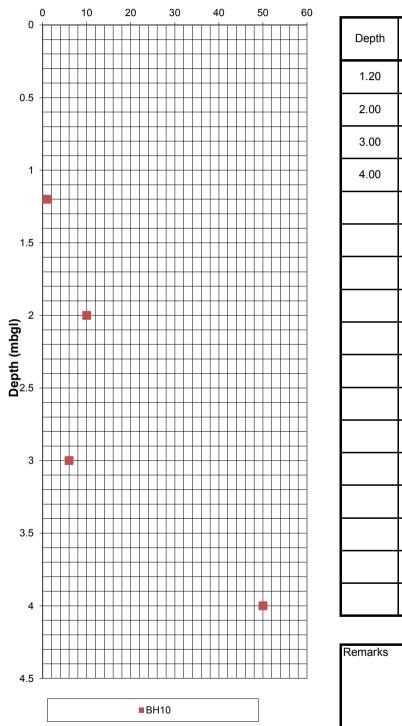
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=29 (10,5,7,8,7,7)		
2.00	N=32 (10,15,13,10,6,3)		
3.00	N=40 (7,7,7,7,8,18)		
4.00	N=33 (2,4,7,8,9,9)		
5.00	N=49 (11,14,10,11,12,16)		
6.00	50/165mm (12,13,18,24,8)		
7.50	50/150mm (13,12,17,33)		


		SP	T Vs De	Hole	BH7		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387121.2	Northing	785678.8	G.L.	7.863	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=23 (1,4,2,6,5,10)		
2.00	N=38 (1,5,7,7,11,13)		
3.00	50/192mm (12,11,16,22,12)		
4.00	50/164mm (13,12,16,24,10)		

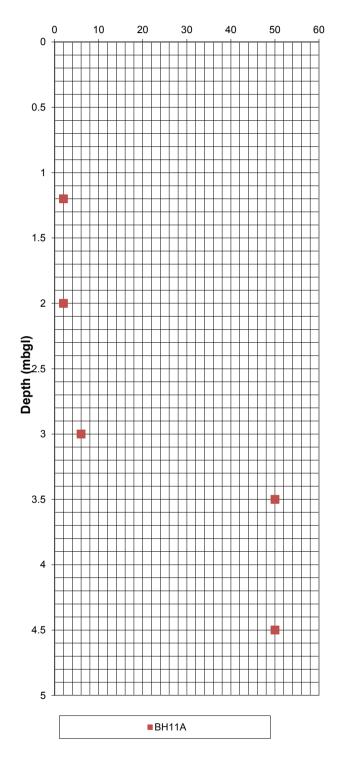
Remarks


		SP	T Vs De	Hole	BH8		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387053.3	Northing	785651.5	G.L.	7.244	Energy Ratio	39.00%
						Hammer ID	


		Cooing	Water
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	50/269mm (1,4,13,13,14,10)		
2.00	50/219mm (25,19,16,15)		
3.00	50/200mm (7,8,10,13,27)		
4.00	50/85mm (8,14,42,8)		
5.00	50/150mm (14,11,27,23)		

COSTAIN Environmental Services

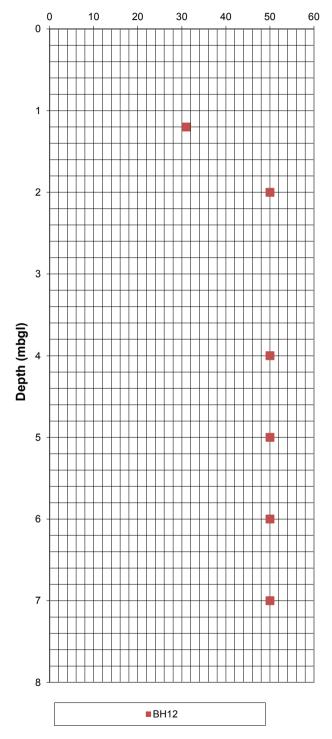
SPT Vs Depth						Hole	BH9
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387035.5	Northing	785652.6	G.L.	7.076	Energy Ratio	39.00%
						Hammer ID	



SPT Vs Depth					Hole	BH10	
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS				Date Drawn	06/01/2014	
Easting	387009.6	Northing	785657.3	G.L.	7.959	Energy Ratio	0.00%
						Hammer ID	

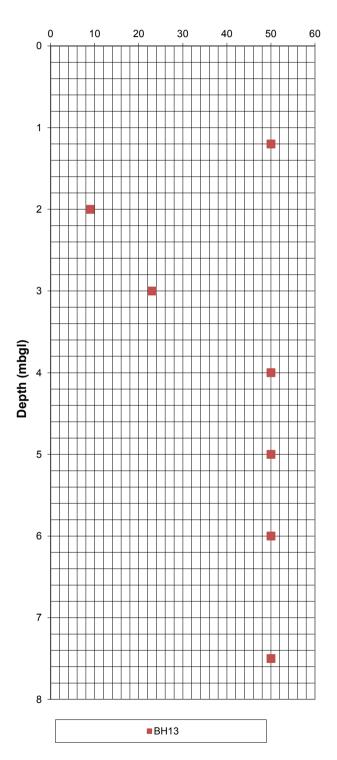
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=1 (0,0,1,0,0,0)		
2.00	N=10 (3,3,4,3,2,1)		
3.00	N=6 (0,0,0,0,3,3)		
4.00	50/190mm (12,13,12,20,18)		

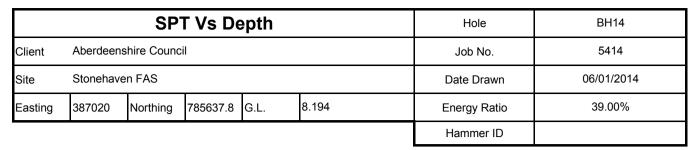

SPT Vs Depth					Hole	BH11A	
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	386915.7	Northing	785653.2	G.L.	9.207	Energy Ratio	74.00%
						Hammer ID	

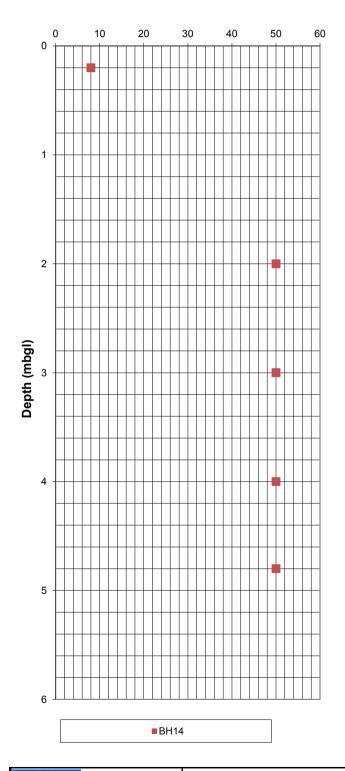


Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=2 (1,0,1,0,1,0)		
2.00	N=2 (1,0,0,1,0,1)	1.50	
3.00	N=6 (0,0,0,1,0,5)	3.00	
3.50	50/120mm (25,20,30)	3.30	3.00
4.50	50/150mm (20,5,20,30)	4.10	

Remarks

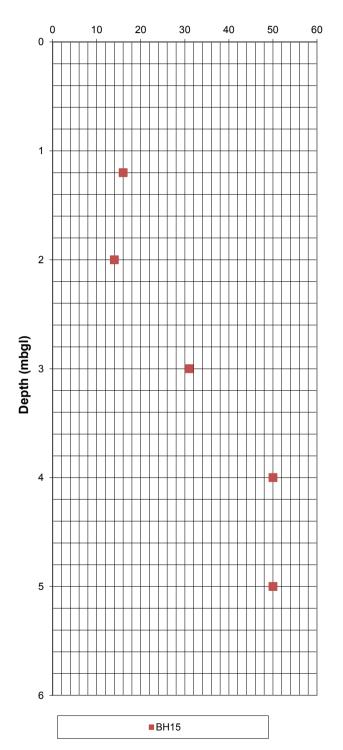

SPT Vs Depth						Hole	BH12
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	386920.4	Northing	785631.7	G.L.	9.881	Energy Ratio	39.00%
						Hammer ID	


Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=31 (5,6,6,6,8,11)		
2.00	50/135mm (25,0,37,13)		
4.00	50/233mm (6,11,13,15,18,4)		
5.00	50/129mm (13,12,26,24)		
6.00	50/75mm (13,12,50)		
7.00	50/99mm (14,11,35,15)		


SPT Vs Depth						Hole	BH13
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	386957.9	Northing	785642.3	G.L.	8.938	Energy Ratio	39.00%
						Hammer ID	

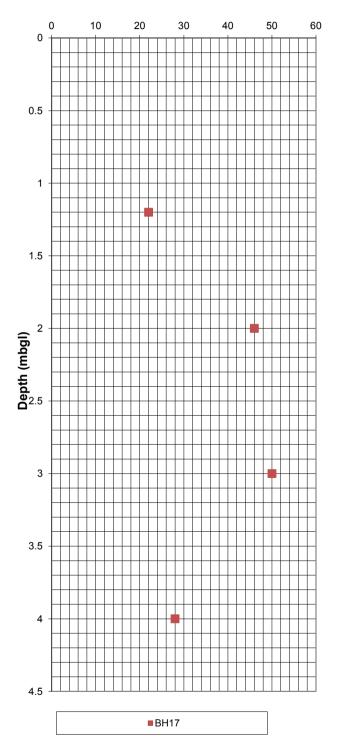
SPT	Ν	Va	lue
-----	---	----	-----

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	50/43mm (0,1,50)		
2.00	N=9 (0,0,1,3,3,2)		
3.00	N=23 (11,7,6,7,6,4)		
4.00	50/194mm (8,17,25,16,9)		
5.00	50/129mm (8,11,11,39)		
6.00	50/39mm (18,7,50)		
7.50	50/5mm (25,50)		



Depth	Uncorrected N value	Casing Depth	Water Depth
0.20	N=8 (1,1,2,3,2,1)		
2.00	N=47 (15,10,13,13,10,11)		
3.00	50/150mm (9,15,19,31)		
4.00	50/4mm (25,50)		
4.80	50/34mm (25,50)		

Remarks

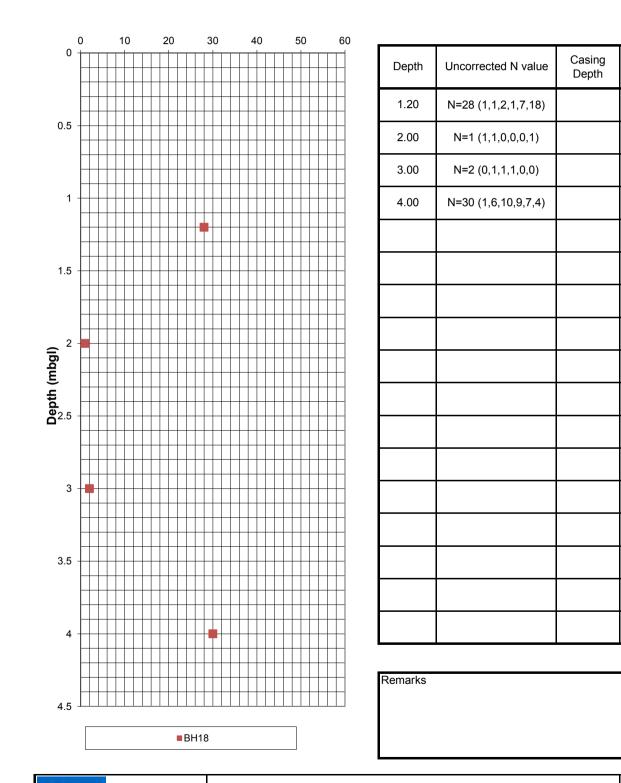

		SP	T Vs De	Hole	BH15		
Client	Aberdeens	shire Counc	il	Job No.	5414		
Site	Stonehave	n FAS				Date Drawn	06/01/2014
Easting	387056.2	Northing	785631.1	G.L.	8.076	Energy Ratio	39.00%
						Hammer ID	

SPT	Ν	Value
-----	---	-------

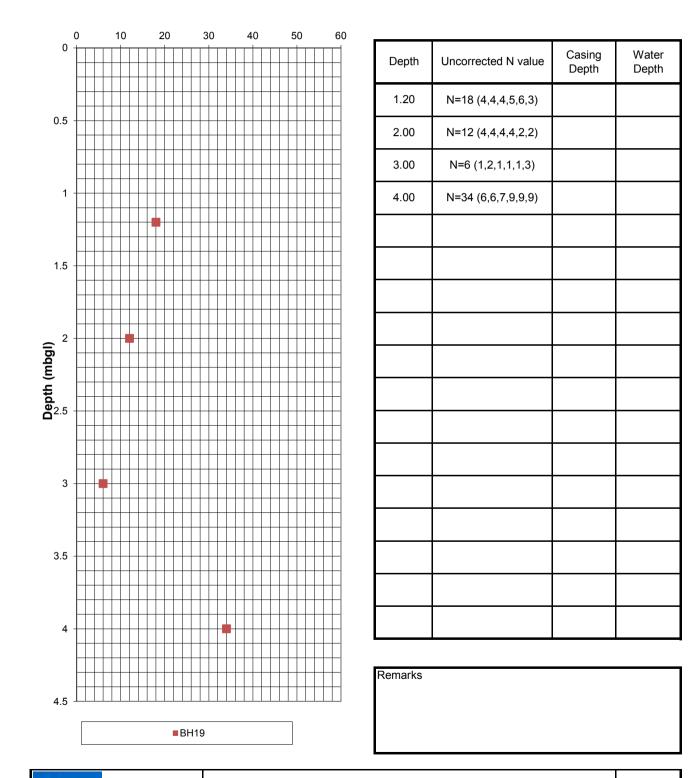
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=16 (1,1,2,5,8)		
2.00	N=14 (2,4,2,3,5,4)		
3.00	N=31 (1,4,8,9,7,7)		
4.00	50/257mm (2,7,11,15,16,8)		
5.00	50/125mm (8,13,23,27)		

		SP	۲Vs De	Hole	BH17		
Client	Aberdeens	shire Counc	I		Job No.	5414	
Site	Stonehave	n FAS				Date Drawn	06/01/2014
Easting	387201.6	Northing	785685.9	G.L.	6.408	Energy Ratio	39.00%
						Hammer ID	

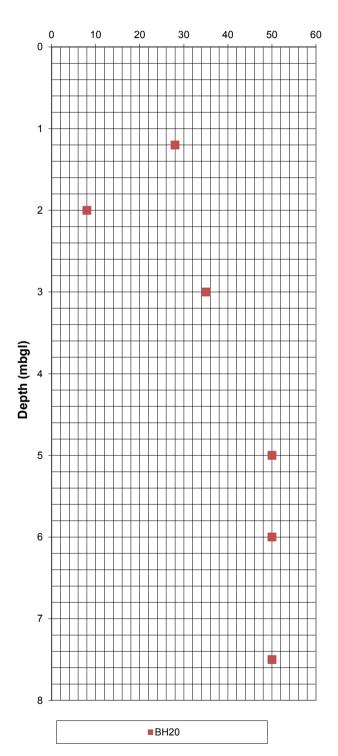
Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=22 (2,2,2,1,6,13)		
2.00	N=46 (2,6,10,15,10,11)		
3.00	50/160mm (16,9,22,23,5)		
4.00	N=28 (3,4,5,8,7,8)		


Remarks

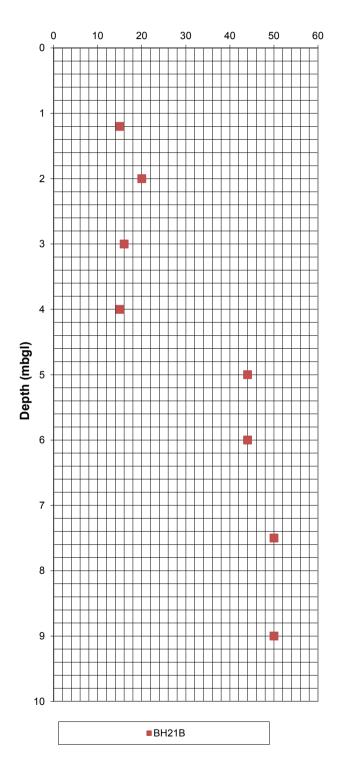
		SP	ΓVs De	Hole	BH18		
Client	Aberdeens	shire Counc	il	Job No.	5414		
Site	Stonehave	en FAS			Date Drawn	06/01/2014	
Easting	387240.4	Northing	785733.6	G.L.	3.247	Energy Ratio	39.00%
						Hammer ID	


Water

Depth


SPT N Value

		SP	ΓVs D	Hole	BH19		
Client	Aberdeens	shire Counc	il		Job No.	5414	
Site	Stonehave	en FAS				Date Drawn	06/01/2014
Easting	387282.6	Northing	785748	G.L.	4.753	Energy Ratio	39.00%
<u></u>		-	-	-		Hammer ID	

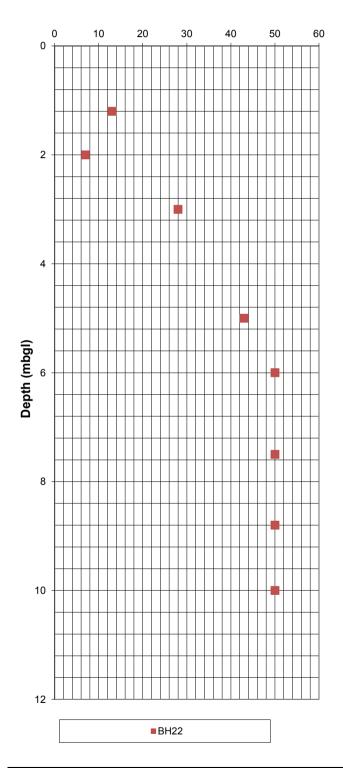

		SP	T Vs De	Hole	BH20		
Client	Aberdeens	shire Counc	il	Job No.	5414		
Site	Stonehave	en FAS				Date Drawn	06/01/2014
Easting	387078.9	Northing	785610.4	G.L.	8.393	Energy Ratio	39.00%
		-	-	-		Hammer ID	

SPT	N١	/alu	е
-----	----	------	---

Depth	Uncorrected N value	Casing	Water
Deptil	Unconfected in value	Depth	Depth
1.20	N=28 (5,11,10,7,5,6)		
2.00	N=8 (9,10,4,2,1,1)		
3.00	N=35 (8,9,8,8,9,10)		
5.00	50/176mm (4,10,16,24,10)		
6.00	50/115mm (8,17,31,19)		
7.50	50/64mm (25,50)		

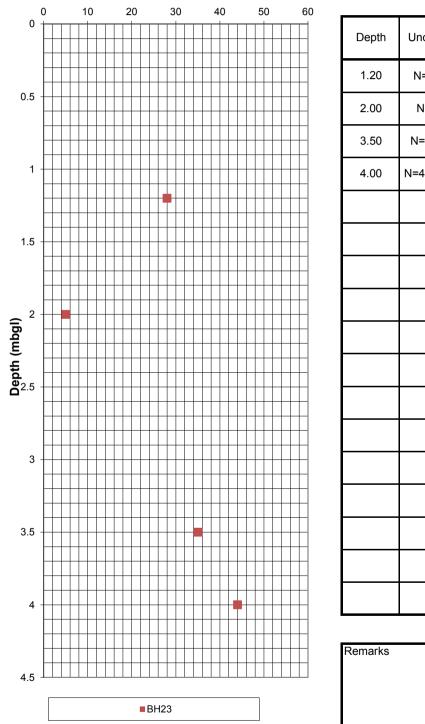
		SP	T Vs De	Hole	BH21B		
Client	Aberdeens	shire Counc	il	Job No.	5414		
Site	Stonehave	en FAS				Date Drawn	06/01/2014
Easting	387076.6	Northing	785596.1	G.L.	8.639	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=15 (4,8,4,2,4,5)		
2.00	N=20 (11,9,6,5,4,5)		
3.00	N=16 (5,11,4,7,3,2)		
4.00	N=15 (1,2,2,3,5,5)		
5.00	N=44 (2,6,11,10,10,13)		
6.00	N=44 (2,7,7,10,12,15)		
7.50	50/122mm (13,12,32,18)		
9.00	50/104mm (14,11,32,18)		

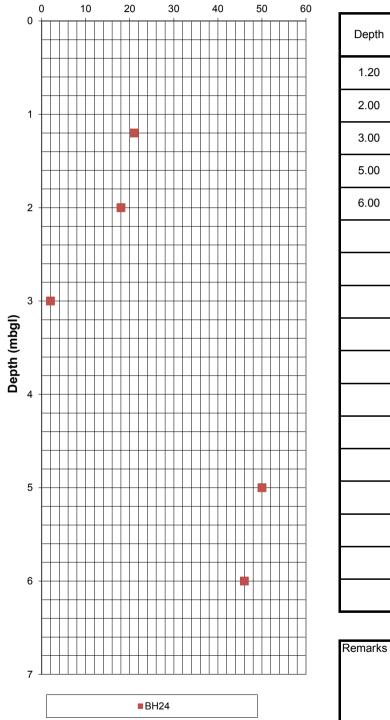

Remarks

COSTAIN Environmental Services

SPT N Values to BS EN ISO 22476-3:2005

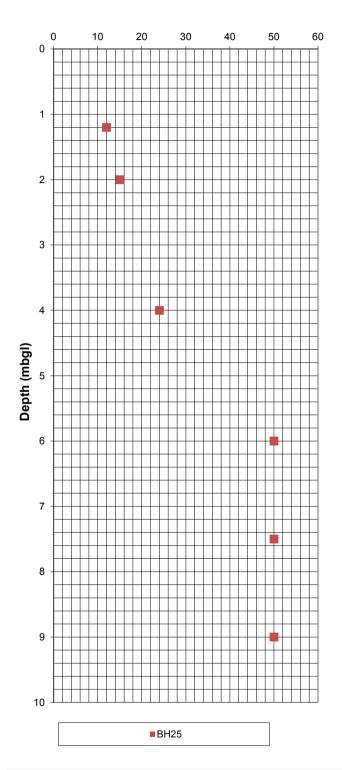

		SP	T Vs De	Hole	BH22		
Client	lient Aberdeenshire Council					Job No.	5414
Site	Stonehave	en FAS		Date Drawn	06/01/2014		
Easting	387070.3	Northing	785570.4	G.L.	8.818	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=13 (0,0,4,4,4,1)		
2.00	N=7 (1,2,1,1,2,3)		
3.00	N=28 (7,10,11,11,4,2)		
5.00	N=43 (9,11,10,12,9,12)		
6.00	50/260mm (8,7,9,15,17,9)		
7.50	50/252mm (4,7,10,15,15,10)		
8.80	50/256mm (10,11,10,12,18,10)		
10.00	50/79mm (14,11,46,4)		


	SPT Vs Depth						BH23
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehave	n FAS		Date Drawn	06/01/2014		
Easting	387072.5	Northing	785532.2	G.L.	9.103	Energy Ratio	39.00%
						Hammer ID	

Uncorrected N value	Casing Depth	Water Depth
N=28 (2,7,5,8,8,7)		
N=5 (4,1,0,0,2,3)		
N=35 (5,6,7,8,9,11)		
N=44 (2,6,8,11,12,13)		
	N=28 (2,7,5,8,8,7) N=5 (4,1,0,0,2,3) N=35 (5,6,7,8,9,11)	Depth Depth N=28 (2,7,5,8,8,7) N=5 (4,1,0,0,2,3) N=35 (5,6,7,8,9,11) N=35 (5,6,7,8,9,11)

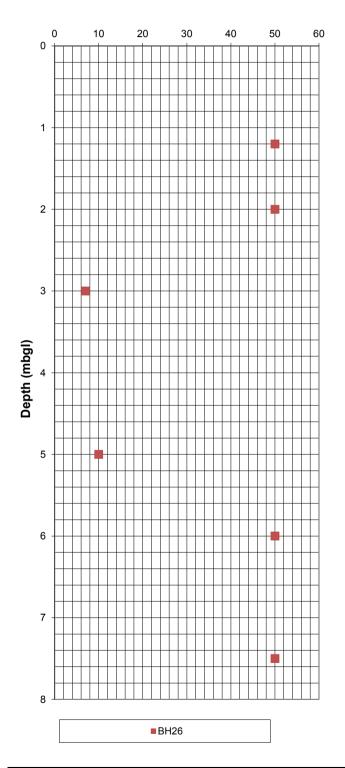
		SP	T Vs De	Hole	BH24		
Client	Aberdeenshire Council					Job No.	5414
Site	Stonehave	en FAS		Date Drawn	06/01/2014		
Easting	387035.5	Northing	785506.5	G.L.	10.494	Energy Ratio	39.00%
						Hammer ID	



Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=21 (16,9,7,6,5,3)		
2.00	N=18 (2,2,3,3,6,6)		
3.00	N=2 (1,0,0,0,1,1)		
5.00	50/258mm (5,7,9,14,18,9)		
6.00	N=46 (7,7,9,9,11,17)		

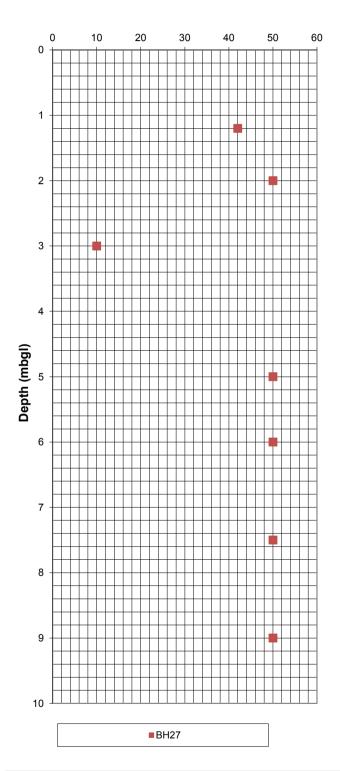
Environmental COSTAIN Services

		SP	T Vs De	Hole	BH25		
Client	ent Aberdeenshire Council					Job No.	5414
Site	Stonehave	n FAS		Date Drawn	06/01/2014		
Easting	386977.5	Northing	785466.3	G.L.	14.034	Energy Ratio	39.00%
						Hammer ID	

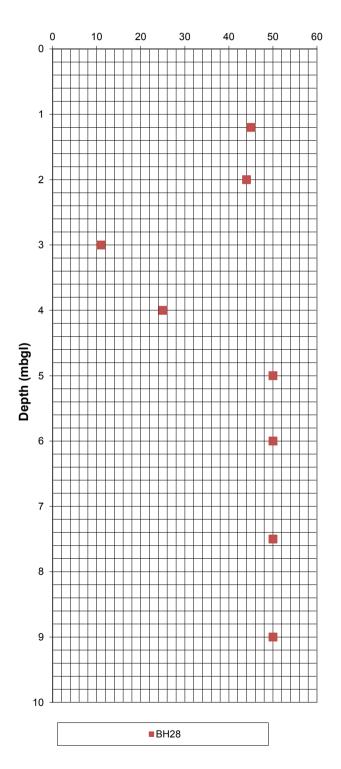


Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=12 (3,6,1,2,4,5)		
2.00	N=15 (2,9,6,5,2,2)		
4.00	N=24 (1,2,4,2,7,11)		
6.00	50/188mm (25,28,14,8)		
7.50	50/212mm (4,8,12,24,14)		
9.00	50/215mm (3,9,9,12,29)		

Remarks


SPT Vs Depth						Hole	BH26
Client	nt Aberdeenshire Council					Job No.	5414
Site	Stonehave	en FAS		Date Drawn	06/01/2014		
Easting	387511.1	Northing	785673.9	G.L.	3.339	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	50/274mm (4,10,13,17,12,8)		
2.00	50/175mm (8,9,11,30,9)		
3.00	N=7 (0,1,1,1,2,3)		
5.00	N=10 (0,2,2,2,3,3)		
6.00	50/261mm (8,9,13,16,15,6)		
7.50	50/6mm (25,50)		


	SPT Vs Depth						BH27
Client	Client Aberdeenshire Council					Job No.	5414
Site	Stonehav	en FAS		Date Drawn	06/01/2014		
Easting	387531	Northing	785607.4	G.L.	3.019	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=42 (3,8,10,12,10,10)		
2.00	50/105mm (5,9,29,21)		
3.00	N=10 (0,1,2,2,2,4)		
5.00	50/86mm (25,30,20)		
6.00	50/225mm (20,5,18,15,17)		
7.50	50/12mm (25,50)		
9.00	50/3mm (25,50)		

Remarks

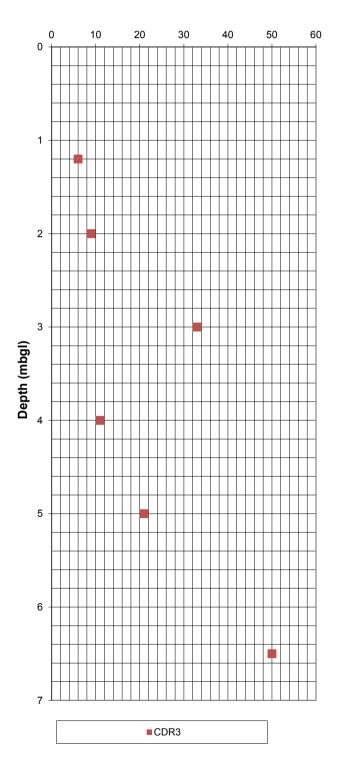

SPT Vs Depth						Hole	BH28
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387347.8	Northing	785741.7	G.L.	3.884	Energy Ratio	39.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=45 (3,8,22,12,6,5)		
2.00	N=44 (1,10,10,10,12,12)		
3.00	N=11 (1,1,1,2,7)		
4.00	N=25 (3,4,8,4,6,7)		
5.00	50/236mm (4,8,13,18,16,3)		
6.00	50/255mm (7,11,12,14,17,7)		
7.50	50/95mm (18,7,40,10)		
9.00	50/130mm (2,1,20,30)		

Remarks

SPT Vs Depth						Hole	BH29
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	386997.5	Northing	785470.2	G.L.	16.228	Energy Ratio	39.00%
						Hammer ID	

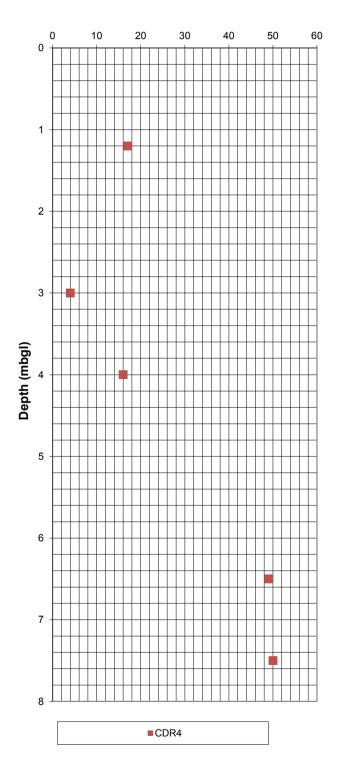
SPT	Ν	Value
-----	---	-------


Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=25 (0,1,1,4,6,14)		
2.00	N=4 (1,1,0,1,2,1)		
3.00	N=12 (0,2,2,2,2,6)		
4.00	N=39 (2,6,8,8,9,14)		
6.00	50/223mm (6,9,14,15,21)		

SPT Vs Depth						Hole	CDR1
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387424.5	Northing	785750.2	G.L.	2.944	Energy Ratio	74.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=50 (11,8,11,10,7,22)		
2.00	N=2 (3,2,1,0,1,0)	1.50	
3.00	N=12 (1,1,4,4,1,3)	3.00	
5.00	N=14 (3,2,2,3,4,5)	4.80	
6.50	N=27 (3,4,5,7,7,8)	6.00	
8.00	50/150mm (17,8,20,30)	6.00	4.85

SPT Vs Depth						Hole	CDR3
Client	t Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387337.4	Northing	785754.9	G.L.	3.36	Energy Ratio	74.00%
						Hammer ID	


SPT	N Va	lue
-----	------	-----

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=6 (3,3,4,1,1,0)		
2.00	N=9 (1,2,2,3,2,2)	1.50	1.80
3.00	N=33 (6,10,12,9,6,6)	3.00	2.70
4.00	N=11 (2,2,2,2,3,4)	4.00	
5.00	N=21 (4,5,6,6,4,5)	4.50	4.80
6.50	50/170mm (3,22,22,20,8)	4.50	5.00

COSTAIN Environmental Services

SPT N Values to BS EN ISO 22476-3:2005

SPT Vs Depth						Hole	CDR4
Client	Aberdeenshire Council				Job No.	5414	
Site	Stonehaven FAS					Date Drawn	06/01/2014
Easting	387387.1	Northing	785737.7	G.L.	3.307	Energy Ratio	74.00%
						Hammer ID	

Depth	Uncorrected N value	Casing Depth	Water Depth
1.20	N=17 (5,5,4,6,3,4)		1.10
3.00	N=4 (4,4,2,1,1,0)	3.00	
4.00	N=16 (3,3,3,3,3,7)	4.00	
6.50	N=49 (6,6,8,13,13,15)	4.50	
7.50	50/200mm (10,15,18,18,14)	4.50	

GeoSonic

Environmental & Geotechnical Drilling Specialists

GeoSonic Drilling Ltd Unit D, Greenfield Complex Greenfield Street Alloa Clackmannanshire FK10 2AL

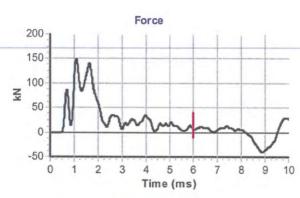
Instrumented Rod Data

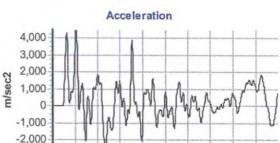
Diameter dr (mm):76Wall Thickness tr (mm):3.7Assumed Modulus Ea (GPa):208Accelerometer No.1:4Accelerometer No.2:7

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

SPT Hammer Ref:	GS RIG02
Test Date:	05/06/2013
Report Date:	05/06/2013
File Name:	GS RIG02.spt
Test Operator:	DC


SPT Hammer Information


Hammer Mass	m (kg):	63.0
Falling Height	h (mm):	760
SPT String Leng	gth L (m):	18.6

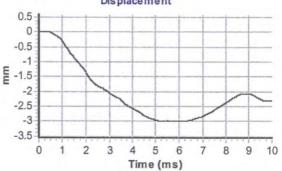
Comments / Location

m/sec

Test undertaken at GeoSonic test facility

4

5 6 7 8


Time (ms)

9 10

10

Velocity

Calculations

0

Area of Rod A (mm2):840Theoretical Energy E
theor473Measured Energy E
meas(J):185

2 3

Energy Ratio E_r (%): 39

The recommended calibration interval is 12 months

Signed: Duncan Campbell Title: Operation Coordinator

SPTMAN ver.1.92 All rights reserved, Testconsult ©2010

SPT Hammer Energy Test Report

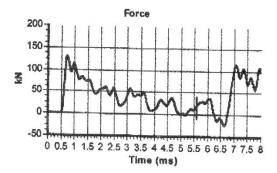
in accordance with BSEN ISO 22476-3:2005

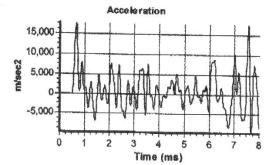
Testconsult Limited 40A Hardwick Grange Warrington Cheshire WA1 4RF

Instrumented Rod Data

Diameter dr (mm):	54
Wall Thickness tr (mm):	6.6
Assumed Modulus Ea (GPa):	208
Accelerometer No.1:	5677
Accelerometer No.2:	5833

SPT Hammer Ref:	WB1
Test Date:	22/02/2013
Report Date:	22/02/2013
File Name:	WB1.spt
Test Operator:	TS

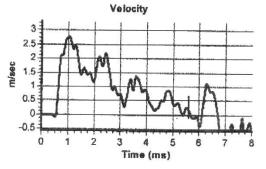


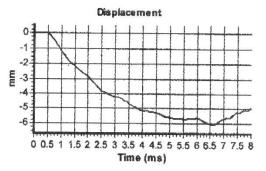

SPT Hammer Information

Hammer Mass m (kg):	63.5
Falling Height h (mm):	760
SPT String Length L (m):	14.0

Comments / Location

Client: Williams Brothers Drilling Ltd Location: Testconsult Laboratory Type: Trip Hammer





Calculations

Energy Ratio E _r (%	6):	74
Measured Energy E _{meas}	(J):	349
Theoretical Energy Etheor	(J):	473
Area of Rod A (mm2):		983

The recommended calibration interval is 12 months

Appendix 6.2 – Variable Head Permeability Testing

				Fallin	g Head Perr	neability Te	est in a Sta	ndpipe	
	COSTAIN		Project Name		Stonehaven			Borehole ID	BH06
	UUUIAIN		-		5414				
			Project ID Date of Test		08/11/2013			Operative Checked	PS/CP AP
Envir	onmental Se	rvices			00/11/2010				
				-					
	on of permeal			Ground	Level	4	d ➡►		
Section	25.4.6.1 (19 ממפ	99+A2:2010 roach) - general				Í	////	////
				İ					
A	$\times \ln \left(\frac{n}{L} \right) $	I_2	1						
k = -	$\frac{1}{F \times (t_2 - t_2)} = \frac{H_1}{F}$	$\overline{\left(\begin{array}{c} \\ 1 \end{array} \right)}$	$A = pi \times d^{-}/4$	H1					
Where:		-		1					
A = cross s	ectional area		е	1					
	of water at tin								
	of water at tin	ne t ₂		H2	2 5	7			
F = Intake F	2.32 m	$\times L$		1					
F =	$\frac{1}{2.32 \text{ pr}}$	()2	0.5	Rest Gro	undwater Le	vel			
ln 1.1	$\left(\frac{L}{D}\right) + \left(1 + \frac{L}{D}\right)$	$1.1 \left(\frac{L}{D} \right)^2$							
			,)	1			0		
Time at Sta	art of Test			16:00	1	↑ o			
Depth of B	orehole Belo			10.00	1	0			
Depth of Borehole Below Ground Level (m) Initial Groundwater Level (m BGL) Diameter of borehole, D (m)				1.63		LO		Filter zone	
	of borehole, I of standpipe,			0.12 0.050	ł	0			
	ponse zone	a (iii)		2.50	1	▼	L		
Bottom of response zone				4.50	1	•	—		
	Filter Zone, L	. (m)		2.00	ł		D		
Intake Fact	tor, F			4.03	J				
		Water							
Time	Elapsed Time (s)	depth (m	Differential Head, H (m)		Chang	ge in Head ag	ainst Elapsed	Time	
		BGL)			0				
	0		1.63 1.58	1.8 1.6					
	20	0.230	1.40	1.0					
	30		1.33	1.2	.				
	60 90	0.370 0.470	1.26 1.16						
	120	0.470	1.10	8.0 ea	0				
	150	0.620	1.01	9.0 <u>a</u>	0				
L	180	0.700	0.93	0.1 (J) 8.0 (J) 9.0 Uitlerential Head 9.0 2.0	0	.			
	210 240	0.780 0.860	0.85 0.77	0.2 Dif		-			
	270	0.940	0.69	0.0		00 10	00 15	2000	2500
	300	0.990	0.64		- U		apsed Time (s		2000
	360 420	1.090	0.54			_10		,	
	420	1.190 1.280	0.44 0.35						
	540	1.340	0.29	1		Calcula	tion of Per	meability (k)	
]	t ₁ (s)	t ₂ (s)	H ₁ (m)	H ₂ (m)	k (ms⁻¹)
	600	1.380	0.25		20	070	1 50	0.00	
	900	1.480	0.15		30	270	1.58	0.69	>1.68E-06
	900 1200	1.480 1.540	0.15 0.09		270	270 1500	0.77	0.69	>1.08E-06
	900	1.480 1.540 1.60	0.15	Remark:		1500			
	900 1200 1500	1.480 1.540	0.15 0.09 0.03	Remark:	270	1500			
	900 1200 1500 1800	1.480 1.540 1.60 1.63	0.15 0.09 0.03 0.00	Remark:	270	1500			
	900 1200 1500 1800	1.480 1.540 1.60 1.63	0.15 0.09 0.03 0.00	Remark:	270	1500			
	900 1200 1500 1800	1.480 1.540 1.60 1.63	0.15 0.09 0.03 0.00	Remark:	270	1500			
	900 1200 1500 1800	1.480 1.540 1.60 1.63	0.15 0.09 0.03 0.00	Remark:	270	1500			

				Fallin	g Head Pern	neability Te	est in a Sta	ndpipe	
	COSTAIN		Project Name		Stonehaven			Borehole ID	BH08
	ooonnin		Project ID		5414				PS/CP
			Date of Test		08/11/2013			Operative Checked	AP
Envir	onmental Se	rvices							
				1					
	on of permeal 25.4.6.1 (19		per BS 5930,	Ground	Level	(d →		
Section	•	roach	y - yeneral			77 j		////	////
k =	$\frac{1}{F} \times \ln \left(\frac{H_1}{H_2} \right)$	I_2	$A - ni \times d^2 / A$						
$\kappa =$	$\overline{r} \times (t_2 - t)$	· · · · · ·	n - p n / u / 4	H1					
Where:									
	ectional area		e						
	of water at tin of water at tin					_			
F = Intake F	actor			H2	2				
F =	$\frac{1}{2.32 \text{ pr}}$	$i \times L$]		
$r = \frac{1}{\ln \left(1 + 1\right)}$	(L/), (1)	$\frac{1}{1} (L/)^{2}$	$)^{0.5}$	Rest Gro	undwater Lev	/el			
m [1.]	$\nabla D^{+} (1+$	D^{\prime}							
È				l	_		0		
Time at Sta				16:30]		0		
Depth of Borehole Below Ground Level (m) Initial Groundwater Level (m BGL)				10.50 2.78	-			Filter zone	
)	0.14					
Diameter of borehole, D (m) Diameter of standpipe, d (m)			0.050	1					
Top of response zone				3.50	1				
Bottom of response zone Length of Filter Zone, L (m)				4.50 1.00			D		
Intake Fact				2.66	1				
				-	4				
Time	Elapsed	Water	Differential		Chan	ae in Head ag	ainst Eleneor	1 Time	
Time	Time (s)	depth (m BGL)	Head, H (m)		Chang	je in neau aga	amar Eidhseo		
	0	0.000	2.78	3.0	0				
	10		2.08	2.5	0				
	20 30		1.87 1.58						
	60	1.750	1.03	2.0 E	0				
	90	1.900	0.88	<u>р</u> 1.50	o 🛉 📃				
	120 150	1.980 1.980	0.80 0.80	Head					
	130	1.980	0.80	jutia	Summer				
	210	1.980	0.80	1.5، Differential Head (m)	0				
┣────	240 270	1.980 1.980	0.80 0.80	ت 0.0		1			
	300	1.980	0.80		0	1000	2000	3000	4000
	360	1.980	0.80			Ela	psed Time (s	5)	
	420	1.980	0.80						
	480 540	1.980 2.080	0.80 0.70			Calcula	tion of Per	rmeability (k)	
	600	2.000	0.70		t ₁ (s)	t_2 (s)	H ₁ (m)	$H_2(m)$	k (ms ⁻¹)
	900	2.160	0.62		90	540	0.88	0.62	> 5.73E-07
	1200	2.200	0.58		900	3000	0.62	0.05	>8.83E-07
┣────	1500 1800	2.30 2.43	0.48 0.35	Remark:	10 Gallons a	dded			
	2100	2.43	0.33	Nonia N.					
	3000	2.73	0.05						
	3300	2.78	0.00						
	3600	2.78	0.00						
l	1								

				Falling Head Permeability Test in a Standpipe
	COSTAIN		Project Name	
	GUDIAIN			
			Project ID	5414 Operative CP/F
F	montal C-	nuises	Date of Test	08/11/2013 Checked AP
Environ	mental Se	IVICES		
	5.4.6.1 (19		per BS 5930,)) - general	Ground Level
$k = \frac{A \times 1}{F}$	$\frac{\ln \left(\frac{H_{1}}{H_{2}} + \frac{H_{2}}{H_{2}} + \frac{H_{1}}{H_{2}} + H$	$\left(\frac{1}{2}\right)$	$A=pi\times d^2/4$	Н1
Where:	ional	of ot		┫ │ │ │ │ │
A = cross sect H ₁ = Head of v			e	
$H_1 = Head of V$ $H_2 = Head of V$				
F = Intake Fac	ctor			H2
F	2.32 pi	$\times L$]
$F = \frac{1}{\ln\left(1.1\left(\frac{L}{2}\right)\right)}$	(D) + (1 +	$1.1 \left(\frac{L}{D} \right)^2$) ^{0.5})	Rest Groundwater Level
Ì				
Time at Start				
Depth of Borehole Below Ground Level (m)				
Initial Groundwater Level (m BGL) Diameter of borehole, D (m)				
Diameter of standpipe, d (m)				
Top of response zone				3.00
Bottom of response zone				5.00
Length of Filter Zone, L (m)				2.00 D
Intake Factor				4.26
	Elapsed Time (s)	Water depth (m BGL)	Differential Head, H (m)	Change in Head against Elapsed Time
	0	0.000	3.03	3.50
	10		0.03	3.00
	20	3.020	0.01	
┣───┼	30	3.020	0.01	2.50
┣───┼	60 90	3.030 3.030	0.00	Ē 2.00
	90 120	3.030	0.00	1.50
	120	3.030	0.00	1 문
	180	3.030	0.00	1.00
				je 0.50
	210	3.030	0.00	E 0.00
	240	3.030 3.030	0.00 0.00	
	240 270	3.030 3.030 3.030	0.00 0.00 0.00	
	240 270 300	3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00	
	240 270	3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00	
	240 270 300 360	3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00	
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0 200 400 600 800 1000 Elapsed Time (s) Calculation of Permeability (k)
	240 270 300 360 420 480	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0 200 400 600 800 1000 Elapsed Time (s) Calculation of Permeability (k) t ₁ (s) t ₂ (s) H ₁ (m) H ₂ (m) k (ms
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0 200 400 600 800 1000 Elapsed Time (s) Calculation of Permeability (k)
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0 200 400 600 800 1000 Elapsed Time (s) Calculation of Permeability (k) t ₁ (s) t ₂ (s) H ₁ (m) H ₂ (m) k (ms
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	240 270 300 360 420 480 540	3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030 3.030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

		Falling Head Permeability Test in a Standpipe
COSTAIN	Project Name	
GUSTAIN		
	Project ID	5414 Operative PS/C
Environmental Services	Date of Test	08/11/2013 Checked AP
Environmental Services		
Calculation of permeability (k) as Section 25.4.6.1 (1999+A2:201		Ground Level
approach		
$k = \frac{A \times \ln \left(\frac{H_1}{H_2} \right)}{F \times \left(t_2 - t_1 \right)}$	$A=pi\times d^2/4$	н1
Where:	_	_
A = cross sectional area of standpip H ₁ = Head of water at time t_1	e	
H_2 = Head of water at time t_2		
F = Intake Factor		H2
$\overline{F} = \text{Intake Factor}$ $F = \frac{2.32 pi \times L}{\ln\left(1.1 \left(\frac{L}{D}\right) + \left(1+1.1 \left(\frac{L}{D}\right)^2\right)\right)}$		┓
$\Gamma = \frac{1}{1 \left(1 + \left(\frac{1}{2}\right)\right) \left(1 + \left(\frac{1}{2}\right)\right)^2}$	$)^{0.5})$	Rest Groundwater Level
$\ln\left(1.1(L_D) + (1+1.1(L_D))\right)$		
	1	
Time at Start of Test		
Depth of Borehole Below Ground	Level (m)	
Initial Groundwater Level (m BGL		13.60 0 0 0 0 Filter zone 1.50 L 0 O Filter zone O O O Filter zone
Diameter of borehole, D (m)		0.14
Diameter of standpipe, d (m)		
Top of response zone		2.00
Bottom of response zone		3.50 D
Length of Filter Zone, L (m) Intake Factor, F		1.50
Intake Factor, F		3.48
_, , Water		1
Time Elapsed donth (m	Differential	Change in Head adainst Elabsed Time
Time (s)	Head, H (m)	
Time (s) Geptin (m BGL) 0 1.400	Head, H (m)	0.12
Time (s) BGL) 0 1.400 10 1.450		0.12
Time (s) BGL) 0 1.400 10 1.450 20 1.450	0.10 0.05 0.05	
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460	0.10 0.05 0.05 0.04	0.12
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470	0.10 0.05 0.05 0.04 0.03	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480	0.10 0.05 0.05 0.04 0.03 0.02	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480	0.10 0.05 0.05 0.04 0.03 0.02 0.02	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480	0.10 0.05 0.05 0.04 0.03 0.02	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 120 1.480 120 1.480 120 1.490 180 1.490 210 1.490	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 180 1.490 210 1.490 240 1.490	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01	0.12 0.10 0.08 0.06 0.04 0.04 0.02
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 120 1.480 120 1.480 120 1.490 180 1.490 210 1.490 240 1.490 270 1.490	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01	0.12 0.10 0.08
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 270 1.490 300 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	0.12 0.10 0.08 0.06 0.04 0.04 0.02 0.00
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 300 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00	0.12 0.10 0.08 0.06 0.04 0.04 0.02 0.00 0.00 0.00 0.00 0.00
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00	0.12 0.10 0.08 0.06 0.04 0.04 0.02 0.00 0.00 0.00 0.00 0.00
Time (s) BGL) 0 1.400 10 1.450 20 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 240 1.500 300 1.500 420 1.500 480 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00	0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.00
Time (s) BGL) 0 1.400 10 1.450 20 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 240 1.500 300 1.500 420 1.500 480 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00	0.12 0.10 0.08 0.04 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.00
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	Calculation of Permeability (k)
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$\begin{array}{c c} 0.12 \\ 0.10 \\ 0.08 \\ 0.06 \\ 0.02 \\ 0.00 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 480 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.450 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 30 1.460 60 1.470 90 1.480 120 1.480 150 1.490 120 1.480 120 1.480 120 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 300 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ $
Time (s) BGL) 0 1.400 10 1.450 20 1.450 30 1.460 60 1.470 90 1.480 120 1.480 120 1.480 120 1.480 120 1.490 120 1.490 120 1.490 150 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.490 210 1.500 360 1.500 480 1.500 480 1.500 540 1.500	0.10 0.05 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00	$ \begin{array}{c} 0.12 \\ 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ 0.00 \\ $

			Falling Head Permeability Test in a Standpipe								
COST	AIN	Project Name		3H18							
0001	111	,									
		Project ID	5414 Operative PS/0								
Environmente	l Convicco	Date of Test	08/11/2013 Checked AF								
Environmenta	I SELVICES										
Calculation of perr Section 25.4.6.1			Ground Level	/							
$k = \frac{A \times \ln\left(\frac{H}{F}\right)}{F \times (t_2)}$ Where:		$A=pi\times d^2/4$	Н1								
A = cross sectional a	rea of standpin	e	┫ │ │ │ │ │								
H_1 = Head of water a	it time t ₁										
H ₂ = Head of water a			H2 H2								
F = Intake Factor											
$F = \frac{1.3}{\ln\left(1.1\left(\frac{L}{D}\right) + \frac{1.3}{D}\right)}$	$\frac{2 p l \times L}{\left(1 + 1.1 \left(\frac{L}{D}\right)^2\right)}$)0.5)	Rest Groundwater Level								
Time at Start of Tes	4										
Depth of Borehole		Level (m)									
Initial Groundwater			5.00 0 0 Filter zone 1.89 L 0 0 Filter zone								
Diameter of boreho	le, D (m)		0.12								
Diameter of standp											
Top of response zo			3.50 ← →								
Bottom of response Length of Filter Zor			4.50 1.00 D								
Intake Factor, F	, <u>-</u> (m)		2.49								
Time Elapso		Differential Head, H (m)	Change in Head against Elapsed Time								
	0 0.000	1.89	2.00								
		1.87	1.80								
	10 <u>0.020</u>										
	20 0.150	1.74	1.60								
	200.150300.420	1.74 1.47	1.40								
	200.150300.420600.800	1.74 1.47 1.09									
	20 0.150 30 0.420 60 0.800 90 1.100	1.74 1.47 1.09 0.79									
	20 0.150 30 0.420 60 0.800 90 1.100	1.74 1.47 1.09									
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730	1.74 1.47 1.09 0.79 0.50 0.27 0.16									
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11									
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.850	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04	1.40 E 1.20 1.00 H 1.20 0.80 H 1.20 0.80 0.80 0.40 0.40 0.20 0.00								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02	1.40 1.20 1.00 1.00 1.00 0.80 0.80 0.60 0.40 0.200 400 600 800 1000								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.850	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04	1.40 E 1.20 1.00 H 1.20 0.80 H 1.20 0.80 0.80 0.40 0.40 0.20 0.00								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 300 1.890 360 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00	1.40 1.20 1.00 1.00 1.00 0.80 0.80 0.60 0.40 0.200 400 600 800 1000								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 300 1.890 420 1.890 480 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00	L 40 1.20 1.00 0.80 0.80 0.40 0.20 0.00 0 200 400 600 800 1000 Elapsed Time (s)								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 300 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00	1.40 1.20 1.00 0.80 0.80 0.40 0.20 0.00 0.200 400 600 800 1000 Elapsed Time (s)								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 300 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E-06							
	20 0.150 30 0.420 60 0.800 90 1.100 120 1.390 150 1.620 180 1.730 210 1.780 240 1.850 270 1.870 360 1.890 420 1.890 480 1.890 540 1.890	1.74 1.47 1.09 0.79 0.50 0.27 0.16 0.11 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E-06							

		Falling Head Permeability Test in a Standpipe								
COSTAIN	Project Name		1R							
GOSTAIN										
	Project ID	5414 Operative PS/0								
Environmental Services	Date of Test	08/11/2013 Checked AF	_							
Environmental Services										
Calculation of permeability (k) as Section 25.4.6.1 (1999+A2:2010 approach		Ground Level								
$k = \frac{A \times \ln \left(\frac{H_1}{H_2} \right)}{F \times \left(t_2 - t_1 \right)} $	$A=pi\times d^2/4$	н1								
Where: A = cross sectional area of standpip	0	┥ │ │ │ │ │								
H_1 = Head of water at time t_1	6									
H_2 = Head of water at time t_2										
F = Intake Factor		H2								
$\overline{F} = \text{Intake Factor}$ $F = \frac{2.32 pi \times L}{\ln\left(1.1\left(\frac{L}{D}\right) + \left(1 + 1.1\left(\frac{L}{D}\right)^2\right)^2\right)}$	$)^{0.5}$	Rest Groundwater Level								
	,) ,									
Time at Start of Test										
Depth of Borehole Below Ground	Level (m)									
Initial Groundwater Level (m BGL)		10.00 0 0 0 Filter zone 1.93 L 0 0 Filter zone								
Diameter of borehole, D (m)		0.14								
Diameter of standpipe, d (m) Top of response zone										
Bottom of response zone		2.00 3.50								
Length of Filter Zone, L (m)		1.50 D								
Intake Factor, F		3.48								
Time Elapsed Water Time (s) BGL)	Differential Head, H (m)	Change in Head adainst Elabsed Time								
0 0.000	1.93	2.50								
10 0.300	1.63									
10 0.300 20 1.020	1.63 0.91	2.00								
10 0.300 20 1.020 30 1.400	1.63 0.91 0.53									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650	1.63 0.91									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720	1.63 0.91 0.53 0.36 0.28 0.21									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760	1.63 0.91 0.53 0.36 0.28 0.21 0.17									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850	1.63 0.91 0.53 0.36 0.28 0.21 0.17	(j) 1.50 H agg 1.00 0.50 0.50								
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02									
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.05 0.02	D.00								
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 360 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00	E 1.50 1.00 0.00 0 200 400 600 800 1000								
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00	E 1.50 1.00 0.00 0 200 400 600 800 1000								
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00	E 1.50 1.00 0.50 0.00 0 200 400 600 800 1000 Elapsed Time (s)								
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 480 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00	E 1.50 1.00 0.00 0 200 400 600 800 1000	<u>s⁻¹)</u>							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 480 1.930 540 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c cccc} \hline \mathbf{E} & 1.50 \\ \hline \mathbf{F} & 1.00 \\ 0.50 \\ 0.00 \\ 0 \\ \hline \mathbf{E} & 0.50 \\ 0 \\ \hline \mathbf{E} & 0.50 \\ \hline \mathbf{E} & 0.50 \\ \hline \mathbf{E} & \mathbf{E} & \mathbf{E} \\ $	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$(f) = 1.50 \\ f = 1.00 \\ 0.50 \\ 0.00 \\ 0 \\ 200 \\ 400 \\ 600 \\ 800 \\ 1000 \\ Elapsed Time (s) \\ (f) \\ (f) \\ (f) \\ (f) \\ (f) \\ (g) \\ (f) \\ (g) \\ (f) \\ (g)	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	Image: state sta	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	Image: state sta	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	Image: state sta	E-05							
10 0.300 20 1.020 30 1.400 60 1.570 90 1.650 120 1.720 150 1.760 180 1.810 210 1.850 240 1.880 270 1.910 300 1.930 420 1.930 540 1.930 600 1.930	1.63 0.91 0.53 0.36 0.28 0.21 0.17 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00	Image: state sta	E-05							

Appendix 7 - Groundwater Monitoring

Appendix 7.1 – Groundwater Monitoring Result Sheets

RECORD OF MEASUREMENTS FOR MONITORING BOREHOLES

Environmental Services

Client Name	Aberdeensl	nire Council									Date of M	onitoring	27/11/2013 10:30 - 12:30		
Site Name	Stonehaver	River Carron a	nd Burn of Gl	aslaw FA	S]				Job Ni	umber	5414		
Sample Point Reference	CH₄ (%)	CO ₂ (%)	O ₂ (%)	ВА (%		CO (ppm)	H₂S (ppm)	L.CH₄ (%)	P.C (%	CH₄ ⁄6)	Rel Pressure (mb)	Flow (l/hr)	Water level (mbgl)	Base (mbgl)	
BH21B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.93	3.48	
BH15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.51	3.46	
BH13PIEZO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.04	6.74	
BH13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.08	5.00	
BH6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.65	4.46	
BH8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.81	4.45	
BH18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.91	4.47	
Accuracy of Instrument															
Instrument Used	Used GW Dip tape]	Date	Last Calibrate	ed 24.11.13				Serial Number		T62			
Atmospheric Pre	ssure (mb)	1028			Date	Next Calibrati	on Due	28.02.14			Operator		A Grierson		

Notes/Comments

Weather / Temperature

Date Next Calibration Due 28.02.14 Date Last Calibration Gas Check NR

Serial Number	T62
Operator	A Grierson
Pressure Trend	Rising

Cold/calm 12⁰C

COSTAIN

RECORD OF MEASUREMENTS FOR GAS MONITORING BOREHOLES

Environmental Services

Client Name	Aberdeensh	ire Council									Date of N	lonitoring	06/12/2013	
Site Name	Stonehaven	River Carron a	and Burn of Gla	aslaw FA	S						Job N	umber	5414	
Sample Point Reference	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	ВА (%		CO (ppm)	H ₂ S (ppm)	L.CH₄ (%)		CH₄ %)	Rel Pressure (mb)	Time	Water level (mbgl)	Base (mbgl)
BH21B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11:01	1.9	3.47
BH15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:14	1.49	3.46
BH13PIEZO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11:06	3.03	6.88
BH13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11:07	3.06	5.01
BH6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11:10	1.60	4.46
BH8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:55	2.78	4.45
BH18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:07	1.90	4.47
Accuracy of Instrument														

Instrument Used	GW Dip tape
Atmospheric Pressure (mb)	1019
Weather / Temperature	Cold/calm 0ºC

Date Last Calibrated	24.11.13
Date Next Calibration Due	28.02.14
Date Last Calibration Gas Check	NR

Serial Number	T62
Operator	A.Grierson
Pressure Trend	Raising

Notes/Comments

RECORD OF MEASUREMENTS FOR MONITORING BOREHOLES

Environmental Services

Client Name	Aberdeenst	nire Council									Date of N	Ionitoring	13/12/2013	
Site Name	Stonehaver	n River Carron a	nd Burn of Gl	aslaw FA	S]				Job N	umber	5414	
Sample Point Reference	CH₄ (%)	CO ₂ (%)	O ₂ (%)	B/ (%		CO (ppm)	H ₂ S (ppm)	L.CH ₄ (%)		CH₄ %)	Rel Pressure (mb)	Time	Water level (mbgl)	Base (mbgl)
BH21B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:34	1.9	3.47
BH15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:38	1.50	3.46
BH13PIEZO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:40	3.00	6.88
BH13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:40	3.02	4.99
BH6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Damaged, cannot monito	
BH8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:46	2.78	4.45
BH18	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10:29	1.92	4.47
Accuracy of Instrument														
Instrument Used	Instrument Used GW Dip tape			Date	Last Calibrate	ed	24.11.13			Serial Numb	ber	T62		
Atmospheric Pre	ssure (mb)	1004		1	Date	Next Calibrati	on Due	28.02.1	14		Operator		A.Grierson	

Date Last Calibration Gas Check

NR

Raising

Pressure Trend

Notes/Comments

Weather / Temperature

Cold/calm 10⁰C

Factual Report on Ground Investigation

Stonehaven River Carron & Burn of Glaslaw Flood Alleviation Scheme -Ground Investigation

Volume 2 of 2

Contract No: 018936/5414 January 2014

Client: Aberdeenshire Council Engineer: JBA Consulting

Appendix 8 - Geotechnical Test Results

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample	Hole Id		Sample	Dept	h (m)	Description	MC	LL	PL	PI	<425	Remarks
No		Туре	No	From	То		(%)	(%)	(%)	(%)	mic (%)	
S8790	BH10	В	5.0	2.00	2.50	Brown slightly silty gravelly SAND with PEAT	90					
S8800	BH12	D	13.0	3.50		Pinkish brown clayey sandy SILT	17	32	19	13	100	Natural Specimen,4- point.
S8801	BH12	D	15.0	4.00	4.45	Brown very sandy CLAY	17	36	21	15	100	Natural Specimen,4- point.
S8808	BH13	В	11.0	4.70	5.50	Light pinkish brown slightly gravelly silty sandy CLAY	9	30	16	14	78	Sieved Specimen,4- point.
S8814	BH14	В	6.0	2.40	3.00	Reddish brown gravelly sandy silty CLAY	14	28	14	14	52	Sieved Specimen,4- point.
S8816	BH14	D	10.0	3.50	3.75	Brown slightly gravelly very sandy silty CLAY	14	27	17	10	81	Sieved Specimen,1- point.
S8823	BH15	В	8.0	3.00	3.30	Orange brown slightly sandy gravelly silty CLAY	18	36	17	19	29	Sieved Specimen,4- point.
S8827	BH17	D	4.0	1.20	1.65	Brown clayey very gravelly SAND	8				29	Non-plastic
S8832	BH18	D	6.0	2.00	2.45	Black slightly sandy slightly garvelly organic SILT	85	69	48	21	93	Sieved Specimen,4- point.
S8839	BH19	D	9.0	2.80	3.00	Black slightly sandy organic SILT	98					
S8841	BH19	D	12.0	4.00	4.45	Brownish grey slightly clayey sandy GRAVEL	13					
S8842	BH19	В	14.0	4.80	5.00	Reddish brown gravelly sandy CLAY	13	33	14	19	58	Sieved Specimen,4- point.

General no	tes:
------------	------

MC-Moisture content

LL-Liquid limit

PL-Plastic limit

PI-Plasticity Index

Date: 09/12/2013

Contract No:

5414

Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

1489

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample	Hole Id		Sample	Dept	h (m)	Description	MC	LL	PL	PI	<425	Remarks
No		Туре	No	From	То		(%)	(%)	(%)	(%)	mic (%)	
S8716	BH1A	D	11.0	3.30		Dark brown and greyish brown slightly sandy organic SILT	74	107	57	50	100	Natural Specimen,4- point.
S8718	BH1A	В	17.0	5.10	5.60	Dark grey silty organic SAND	72					
S8719	BH1A	D	19.0	5.90		Reddish brown slightly gravelly sandy CLAY	20	31	19	12	69	Sieved Specimen,4- point.
S8721	BH1A	В	24.0	7.00	7.50	Reddish brown slightly gravelly sandy CLAY	13	32	16	16	72	Sieved Specimen,4- point.
S8724	BH2	D	10.0	2.00	2.45	Dark grey slightly sandy slightly gravelly organic SILT and brown slightly sandy GRAVEL	57	74	44	30	22	Sieved Specimen,1- point.
S8845	BH20	D	11.0	3.00	3.45	Orange brown slightly clayey sandy GRAVEL	8.4					
S8849	BH20	D	21.0	6.00	6.45	Pinkish brown slightly sandy CLAY and greenish grey slightly gravelly SAND	14	33	17	16	66	Sieved Specimen,4- point.
S8853	BH21B	В	5.0	1.20	1.80	Brown gravelly clayey SAND	7.3					
S8860	BH21B	D	16.0	5.00	5.45	Reddish brown slightly sandy slightly gravelly silty CLAY	13	37	19	18	70	Sieved Specimen,4- point.
S8867	BH22	D	13.0	4.50		Reddish brown slightly sandy gravelly silty CLAY	10	33	15	18		Sieved Specimen,4- point.
S8873	BH23	В	9.0	3.00	3.35	Reddish brown gravelly very sandy silty CLAY	16	25	17	8	42	Sieved Specimen,4- point.
S8876	BH23	В	15.0	4.00	5.00	Reddish brown slightly sandy slightly gravelly CLAY	14	34	15	19	59	Sieved Specimen,4- point.

MC-Moisture content

LL-Liquid limit

PL-Plastic limit

PI-Plasticity Index

Contract No:

5414

Checked and Agata K-Roche Approved

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

RS-INDEX-Output01

Date: 09/12/2013

Contract No:

5414

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample	Hole Id	Sample	Sample	Dept	h (m)	Description	MC	LL	PL	PI	<425	Remarks
No		Туре	No	From	То		(%)	(%)	(%)	(%)	mic (%)	
S8882	BH24	D	13.0	4.50		Reddish brown sandy gravelly silty CLAY	14	29	18	11	56	Sieved Specimen,4- point.
S8883	BH24	D	15.0	4.90		Reddish brown slightly gravelly very sandy silty CLAY	13	27	15	12	61	Sieved Specimen,4- point.
S8885	BH24	D	19.0	6.00	6.45	Reddish brown sandy gravelly CLAY	12	35	14	21	54	Sieved Specimen,1- point.
S8887	BH25	В	3.0	0.50	1.00	Brown clayey very sandy GRAVEL with cobbles	15	37	23	14	23	Sieved Specimen,4- point.
S8889	BH25	В	10.0	2.60	3.00	Reddish brown slightly sandy slightly gravelly silty CLAY	19	31	20	11	60	Sieved Specimen,4- point.
S8892	BH25	D	19.0	5.50		Reddish brown gravelly sandy CLAY	10	33	14	19	50	Sieved Specimen,4- point.
S8894	BH25	В	27.0	7.50	8.00	Reddish brown sandy gravelly silty CLAY	17	40	16	24	58	Sieved Specimen,4- point.
S8900	BH26	D	10.0	2.40		Reddish brown slightly sandy slightly gravelly clayey SILT	23	38	24	14	73	Sieved Specimen,4- point.
S8904	BH26	D	20.0	5.70		Reddish brown slightly gravelly slightly sandy clayey SILT	24	37	23	14	84	Sieved Specimen,4- point.
S8911	BH27	В	11.0	2.60	3.40	Reddish brown slightly sandy slightly gravelly clayey SILT	33	41	26	15		Sieved Specimen,4- point.
S8912	BH27	В	13.0	3.40	4.00	Reddish brown slightly gravelly slightly sandy silty CLAY with frequent cobbles	23	38	20	18		Sieved Specimen,4- point.
S8915	BH27	В	20.0	6.00	6.20	Reddish brown clayey very sandy GRAVEL	15	26	15	11	28	Sieved Specimen,4- point.

General notes: PL-Plastic limit MC-Moisture content LL-Liquid limit **PI-Plasticity Index** Checked and Agata K-Roche Approved Date: 09/12/2013 Senior Technician

1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

RS-INDEX-Output01

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample	Hole Id		Sample	Dept	h (m)	Description	MC	LL	PL	PI	<425	Remarks
No		Туре	No	From	То		(%)	(%)	(%)	(%)	mic (%)	
S8917	BH28	D	9.0	2.20		Black slightly sandy slightly gravelly organic SILT	55					
S8919	BH28	В	12.0	3.00	3.50	Brown slightly sandy slightly gravelly clayey SILT with cobbles	26	39	23	16	43	Sieved Specimen,4- point.
S8921	BH28	D	15.0	4.00	4.45	Reddish brown gravelly sandy silty CLAY	14	27	16	11	57	Sieved Specimen,4- point.
S8922	BH28	В	22.0	6.60	7.25	Reddish brown slightly gravelly sandy CLAY	11	31	14	17	62	Sieved Specimen,4- point.
S8923	BH28	В	26.0	8.60	9.00	Light brown sandy gravelly CLAY	11	26	18	8	27	Sieved Specimen,4- point.
S8926	BH29	D	6.0	2.00	2.45	Orange brown slightly gravelly very sandy CLAY	25					
S8730	BH3	D	6.0	2.00	2.45	Brown clayey gravelly SAND	15					
S8732	BH3	D	11.0	3.00	3.45	Black organic SILT	83					
S8734	BH3	D	14.0	4.80		Reddish brown slightly sandy slightly gravelly CLAY	14	34	14	20	70	Sieved Specimen,4- point.
S8737	BH3	D	24.0	7.50	7.95	Reddish brown and greenish brown slightly sandy gravelly CLAY	11	27	18	9		Sieved Specimen,4- point.
S8741	BH4	D	8.0	3.00	3.20	Dark grey and brown slightly sandy organic CLAY	56					
S8743	BH4	В	13.0	5.10	5.40	Dark brown sandy gravelly silty CLAY	14	28	13	15	45	Sieved Specimen,4- point.

General notes:

MC-Moisture content

LL-Liquid limit

PL-Plastic limit

PI-Plasticity Index

Date: 09/12/2013

Contract No:

5414

Checked and Agata K-Roche Approved

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

1489

Contract No:

5414

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample	Hole Id		Sample	Dept	h (m)	Description	MC	LL	PL	PI	<425	Remarks
No		Туре	No	From	То		(%)	(%)	(%)	(%)	mic (%)	
S8745	BH4	D	16.0	5.90		Pinkish brown and greyish brown slightly sandy slightly gravelly CLAY	14	38	15	23	72	Sieved Specimen,4- point.
S8751	BH5	В	4.0	2.00	2.70	Brownish grey slightly silty very gravelly SAND	20				25	
S8752	BH5	В	5.0	2.70	3.30	Grey and yellowish brown clayey very sandy GRAVEL	15				30	Non-plastic
S8753	BH5	D	7.0	3.30	3.45	Black and brown slightly sandy slightly gravelly organic SILT	53					
S8756	BH5	В	15.0	5.60	6.00	Grey slightly gravelly slightly sandy SILT	12	27	22	5	69	Sieved Specimen,4- point.
S8758	BH5	D	24.0	9.40		Greyish brown and light brown sandy very gravelly CLAY	10	30	20	10	21	Sieved Specimen,4- point.
S8761	BH6	В	7.0	2.35	2.70	Black slightly gravelly sandy organic SILT	66	55	34	21	69	Sieved Specimen,4- point.
S8763	BH6	D	11.0	3.90		Reddish brown occasional mottled greenish brown slightly sandy gravelly silty CLAY	16	30	15	15	63	Sieved Specimen,4- point.
S8771	BH7	D	9.0	2.40		Reddish brown slightly sandy slightly gravelly silty CLAY	18	33	17	16	76	Sieved Specimen,4- point.
S8776	BH8	В	11.0	2.80	3.70	Brown slightly sandy gravelly CLAY with cobbles	6	32	15	17		Sieved Specimen,4- point.
S8778	BH8	В	15.0	4.00	4.40	Brown gravelly very clayey SAND	14				72	
S8779	BH8	D	16.0	4.50		Brown gravelly sandy CLAY	7	29	14	15	51	Sieved Specimen,4- point.

General notes: PL-Plastic limit MC-Moisture content LL-Liquid limit **PI-Plasticity Index** Checked and Agata K-Roche Approved Date: 09/12/2013 Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

RS-INDEX-Output01

SUMMARY OF INDEX PROPERTIES

BS1377 : Part 2 : 1990 : Clause 3.0, 4.0 & 5.0

Client: Aberdeenshire Council

Contract Name: Stonehaven FAS

Lab Sample MC <425 Hole Id Sample Sample Depth (m) Description LL PL ΡI Remarks No Туре No (%) (%) (%) (%) mic (%) From То D S8783 BH9 6.0 2.00 2.45 Brown very sandy GRAVEL 7.1 Sieved S8785 BH9 D 8.0 2.50 Brown sandy very gravelly CLAY 30 15 15 29 Specimen,4-11 point. S8691 CDR1 В 9.0 3.00 4.00 Black gravelly sandy PEAT 43 44 Sieved Reddish brown slightly sandy slightly CDR1 5.50 Specimen,4-S8692 В 11.0 5.00 18 33 16 17 60 gravelly silty CLAY point. Sieved Orange brown slightly gravelly sandy S8694 CDR1 в 17.0 7.50 8.00 18 31 15 16 65 Specimen,4-CLAY point. CDR3 S8699 D 7.0 2.00 Dark grey very sandy organic SILT 54 S8708 CDR4 D 9.0 1.90 90 Black slightly sandy organic SILT Natural S8709 CDR4 D 11.0 2.50 Grey sandy silty CLAY 28 40 16 24 100 Specimen,4point.

General notes:

Checked and

MC-Moisture content

LL-Liquid limit

PL-Plastic limit

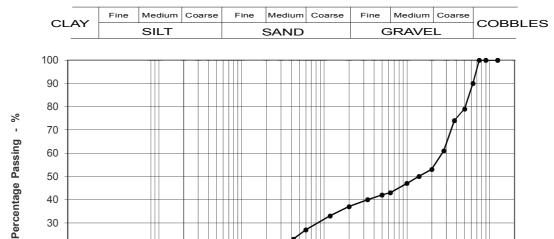
PI-Plasticity Index

Date: 09/12/2013

Senior Technician Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Approved


Contract No: 5414

Project Na	ime:	Stoneha	ven FAS		Samples F	Received:	02/12	/2013	K4 SOILS
					Project Sta		02/12		
Client:			Environmental Services		Testing St		10/12		Soils
Project No): 	5414	Our job/report no: 15	754	Date Repo	rted:	04/01	/2014	
Borehole No:	Sample No:	Depth (m)	Description	Moisture content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing 0.425 mm (%)	Remarks
BH20	U15	4.00	Very high strength reddish brown gravelly sandy silty CLAY (gravel is fmc and sub-angular to sub-rounded)						
	BS 1377	: Part 2 :	Summary of Test Res Clause 4.4 : 1990 Determination of the liquid limit by the cone p		er metho	d.			Checked and Approved Initials: K.P
UKAS TESTING 2519 Test Repoi	BS 1377	: Part 2 :	Clause 5 : 1990 Determination of the plastic limit and plasticity Clause 3.2 : 1990 Determination of the moisture content by the BORATORY Unit 8 Olds Close Olds Approach Watford Herts W	oven-dryin	g methoo	d.			Date: 04/01/2014
			numbers shown above. Approved Signatories: K.Phaure (Tech.Mgr) J.P.	haure (Lab.Mg		request			MSF-11/R2

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8713
Contract No:	5414	Hole ID:	BH1A
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Crovich brown clightly clovey yory condy CRAV/EL with	Sample No:	5
	Greyish brown slightly clayey very sandy GRAVEL with cobbles	Depth (m):	1.20 - 2.00
Description:	CODDIES	Date Tested:	27/11/2013

10			•	- K	
0				0	0.6
		0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 N e Size -	
Sievir	ıg	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				:
90	100				
75	100				
63	90				
50	79				
37.5	74				
28	61				
20	53				
14	50				
10	47				
6.3	43				
5	42				
3.35 2	40 37				
2 1.18	33				
0.6	33 27				
0.425	27				
0.425	18				
0.212	14				
0.15	12				
	1		I		1

20

Test Method					
BS 1377 : Part 2 : 1990					
Sieving	Clause Depth (m):				
Sedimentation	N/A				

20

200

60

N

ი

Sample Proportions				
Cobbles	10.0			
Gravel	53.0			
Sand	29.0			
Silt & Clay	8.0			

Grading Analysis					
D60	27.00				
D10	0.11				
Uniformity Coefficient	253.52				

Date:

09/12/2013

Sheet 1 of 1

Remarks:

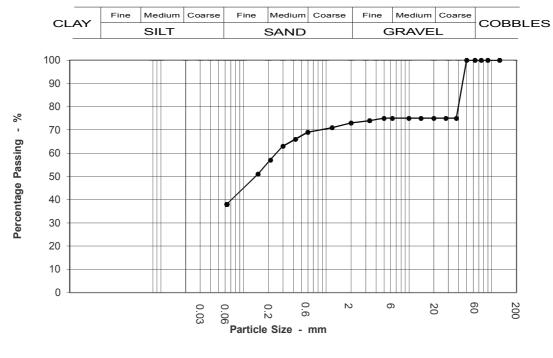
Checked and Approved:

0.063

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

8

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8715
Contract No:	5414	Hole ID:	BH1A
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Dark grow alightly growelly ailty SAND and brown mattled	Sample No:	12
-	Dark grey slightly gravelly silty SAND and brown mottled grey slightly gravelly sandy CLAY	Depth (m):	3.20 - 4.00
Description:	gicy slightly gravely salidy CLAT	Date Tested:	26/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	75		
28	75		
20	75		
14	75		
10	75		
6.3	75		
5	75		
3.35	74		
2	73		
1.18	71		
0.6	69		
0.425	66		
0.3	63		
0.212	57		
0.15	51		
0.063	38		

Test Method					
BS 1377 : Part 2 : 1990					
Sieving	Clause Depth (m):				
Sedimentation	N/A				

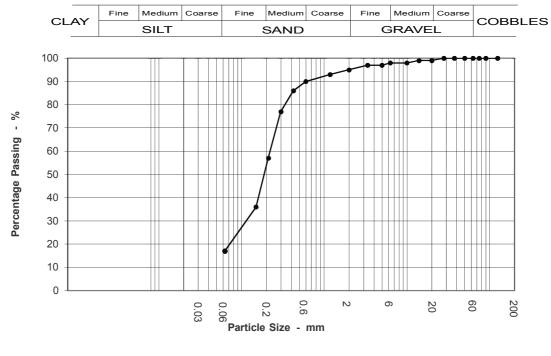
Sample Proportions			
Cobbles	0.0		
Gravel	27.0		
Sand	35.0		
Silt & Clay	38.0		

Grading Analysis		
D60 D10	0.26	
Uniformity Coefficient	N/A	

Remarks:

Checked and Agata K-Roche

Approved: Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8717
Contract No:	5414	Hole ID:	BH1A
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	15
Sample	Grey slightly gravelly clayey SAND	Depth (m):	4.60 - 5.00
Description:		Date Tested:	26/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	99		
10	98		
6.3	98		
5	97		
3.35	97		
2	95		
1.18	93		
0.6	90		
0.425	86		
0.3	77		
0.212	57		
0.15	36		
0.063	17		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	5.0		
Sand	78.0		
Silt & Clay	17.0		

Grading Analysis		
D60 D10	0.23	
Uniformity Coefficient	N/A	

Date:

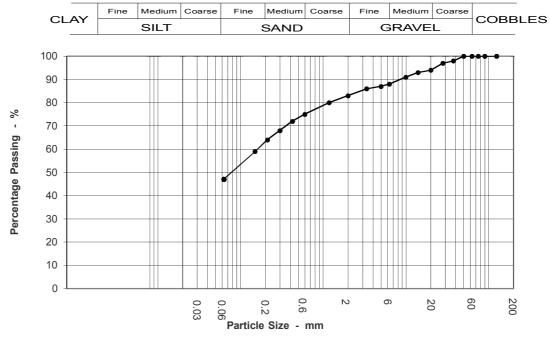
09/12/2013

Checked	and

d Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1


Remarks:

Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8721
Contract No:	5414	Hole ID:	BH1A
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	24
Sample	Reddish brown slightly gravelly sandy CLAY	Depth (m):	7.00 - 7.50
Description:		Date Tested:	05/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	98		
28	97		
20	94		
14	93		
10	91		
6.3	88		
5	87		
3.35	86		
2	83		
1.18	80		
0.6	75		
0.425	72		
0.3	68		
0.212	64		
0.15	59		
0.063	47		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	17.0		
Sand	36.0		
Silt & Clay	47.0		

Grading Analysis		
D60 D10	0.16	
Uniformity Coefficient	N/A	

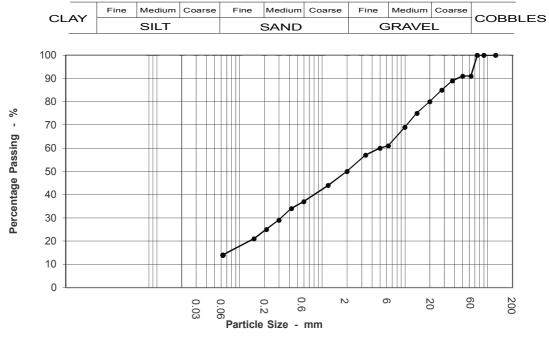
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Sheet 1 of 1

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8722
Contract No:	5414	Hole ID:	BH1A
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	29
Sample	Greyish brown clayey very sandy GRAVEL	Depth (m):	9.00 - 10.00
Description:		Date Tested:	27/11/2013

Sieving Particle Size mm % Passing		Sedimen	tation
		Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	91		
37.5	89		
28	85		
20	80		
14	75		
10	69		
6.3	61		
5	60		
3.35	57		
2	50		
1.18	44		
0.6	37		
0.425	34		
0.3	29		
0.212	25		
0.15	21		
0.063	14		

Agata K-Roche

Senior Technician

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

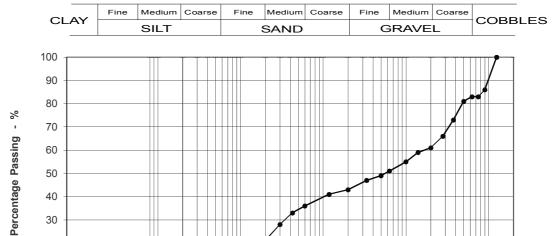
Sample Proportions			
Cobbles	9.0		
Gravel	41.0		
Sand	36.0		
Silt & Clay	14.0		

Grading Analysis		
D60 D10	5.00	
Uniformity Coefficient	N/A	

1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8723
Contract No:	5414	Hole ID:	BH2
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample		Sample No:	6
•	Brown very sandy GRAVEL with cobbles	Depth (m):	0.80 - 1.00
Description:		Date Tested:	28/11/2013

N

ი

0		0.03) ()	0 12 e Size -	0.6
			Partici	e Size -	
Sievir	ng	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	86				
75	83				
63	83				
50	81				
37.5	73				
28	66				
20	61				
14	59				
10	55				
6.3	51				
5	49				
3.35	47				
2	43				
1.18	41				
0.6	36				
0.425	33				
0.3	28				
0.212	22				
0.15	16				
0.063	8				Uı

20 10 0

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions			
Cobbles	17.0		
Gravel	40.0		
Sand	35.0		
Silt & Clay	8.0		

Grading Analysis		
D60	17.00	
D10	0.08	
Uniformity Coefficient	200.59	

Sheet 1 of 1

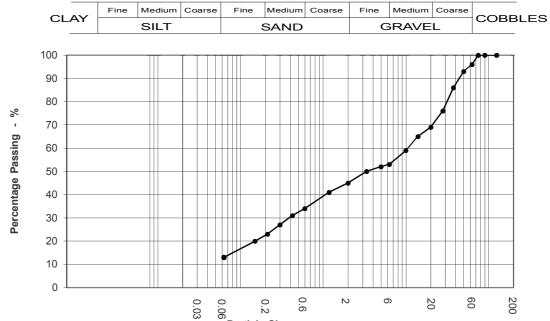
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8725	
Contract No:	5414	Hole ID:	BH2	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	12	
Sample	Brown silty very sandy GRAVEL with occasional cobbles	Depth (m):	3.00 - 4.00	
Description:		Date Tested:	05/12/2013	

Particle	Size	-	mm
i aitioio	0.20		

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	96		
50	93		
37.5	86		
28	76		
20	69		
14	65		
10	59		
6.3	53		
5	52		
3.35	50		
2	45		
1.18	41		
0.6	34		
0.425	31		
0.3	27		
0.212	23		
0.15	20		
0.063	13		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	4.0		
Gravel	51.0		
Sand	32.0		
Silt & Clay	13.0		

Grading Analysis		
D60 D10	10.67	
Uniformity Coefficient	N/A	

Date:

09/12/2013

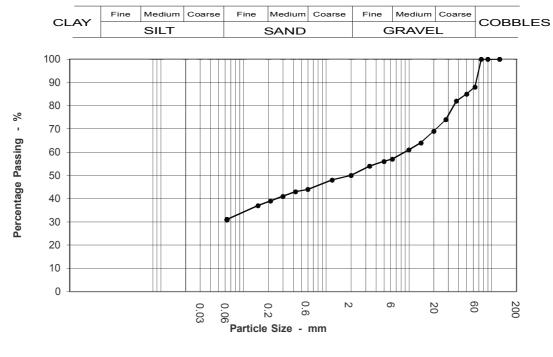
 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8726
Contract No:	5414	Hole ID:	BH2
Contract Name:	Stonehaven FAS	Sample Type:	В
Samala		Sample No:	14
Sample	Brown slightly sandy clayey gravelly SILT with cobbles	Depth (m):	4.00 - 5.00
Description:		Date Tested:	29/11/2013

Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	88		
50	85		
37.5	82		
28	74		
20	69		
14	64		
10	61		
6.3	57		
5	56		
3.35	54		
2	50		
1.18	48		
0.6	44		
0.425	43		
0.3	41		
0.212	39		
0.15	37		
0.063	31		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	12.0		
Gravel	38.0		
Sand	19.0		
Silt & Clay	31.0		

Grading Analysis		
D60 D10	9.08	
Uniformity Coefficient	N/A	

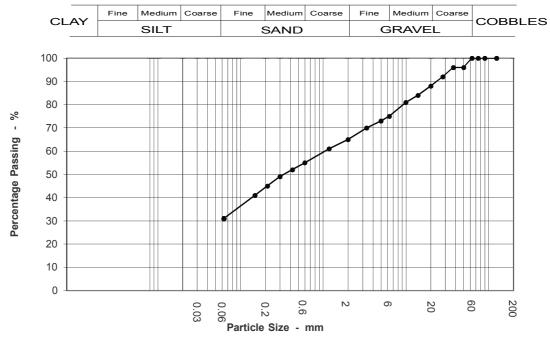
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8727
Contract No:	5414	Hole ID:	BH2
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	18
Sample	Reddish brown very silty SAND and GRAVEL	Depth (m):	6.00 - 6.50
Description:		Date Tested:	27/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	96		
28	92		
20	88		
14	84		
10	81		
6.3	75		
5	73		
3.35	70		
2	65		
1.18	61		
0.6	55		
0.425	52		
0.3	49		
0.212	45		
0.15	41		
0.063	31		

Agata K-Roche

Senior Technician

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	35.0	
Sand	34.0	
Silt & Clay	31.0	

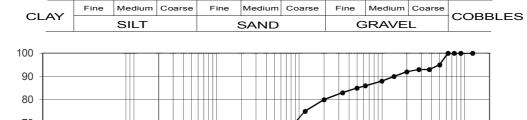
Grading Analysis		
D60 D10	1.08	
Uniformity Coefficient	N/A	

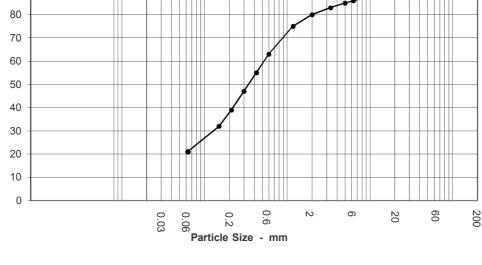
Date:

09/12/2013

, appi or oai	
Unit 10 Wessex Road	Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1


Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8728
Contract No:	5414	Hole ID:	BH3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	2
Sample	Grey clayey gravelly SAND	Depth (m):	0.30 - 0.50
Description:		Date Tested:	02/12/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	93		
28	93		
20	92		
14	90		
10	88		
6.3	86		
5	85		
3.35	83		
2	80		
1.18	75		
0.6	63		
0.425	55		
0.3	47		
0.212	39		
0.15	32		
0.063	21		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	20.0		
Sand	59.0		
Silt & Clay	21.0		

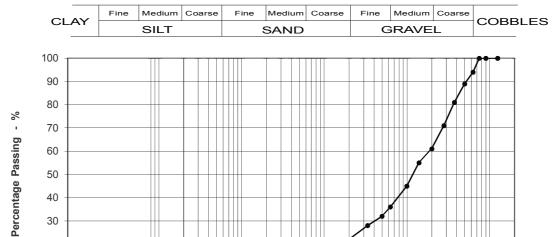
Grading Analysis		
D60 D10	0.53	
Uniformity Coefficient	N/A	

Agata K-Roche Senior Technician

Percentage Passing - %

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8729	
Contract No:	5414	Hole ID:	BH3	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	5	
Sample	Brown slightly clayey sandy GRAVEL with cobbles	Depth (m):	1.20 - 2.00	
Description:		Date Tested:	28/11/2013	

N

ი

	0		0.03	0 06 Particl	0 i2 e Size -	0 6 mm
ĺ	Sievir	na	Sediment	tation	1	
	Particle Size mm	% Passing	Particle Size mm	% Passing		
	125	100				5
	90	100				
	75	100				
	63	94				
	50	89				
	37.5	81				
	28	71				
	20	61				
	14	55				
	10	45				
	6.3	36				
	5	32				
	3.35	28				
	2	22				
	1.18	17				-
	0.6	11				
	0.425	9				
	0.3	8				
	0.212	7				
	0.15	6				
	0.063	4				Uı

20 10 0

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

60

200

Sample Proportions			
Cobbles	6.0		
Gravel	72.0		
Sand	18.0		
Silt & Clay	4.0		

Grading Analysis		
D60	19.00	
D10	0.51	
Uniformity Coefficient 37.07		

Sheet 1 of 1

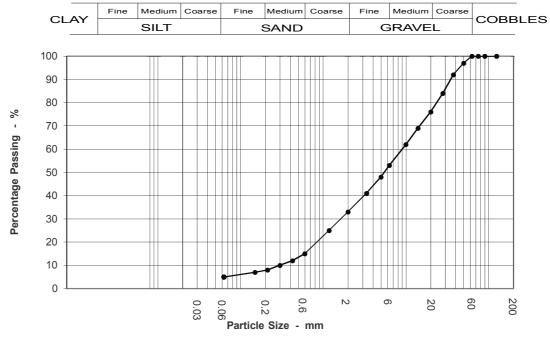
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8731
Contract No:	5414	Hole ID:	BH3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Brown slightly clayey very sandy GRAVEL	Depth (m):	2.00 - 2.60
Description:		Date Tested:	04/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	97		
37.5	92		
28	84		
20	76		
14	69		
10	62		
6.3	53		
5	48		
3.35	41		
2	33		
1.18	25		
0.6	15		
0.425	12		
0.3	10		
0.212	8		
0.15	7		
0.063	5		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions			
Cobbles	0.0		
Gravel	67.0		
Sand	28.0		
Silt & Clay	5.0		

Grading Analysis		
D60	9.18	
D10	0.30	
Uniformity Coefficient	30.59	

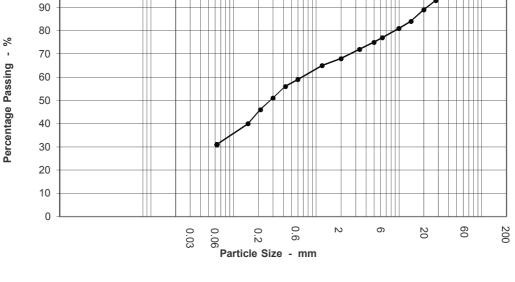
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8735
Contract No:	5414	Hole ID:	BH3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	15
Sample	Brown slightly gravelly sandy CLAY	Depth (m):	4.80 - 5.00
Description:		Date Tested:	28/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	97		
28	93		
20	89		
14	84		
10	81		
6.3	77		
5	75		
3.35	72		
2	68		
1.18	65		
0.6	59		
0.425	56		
0.3	51		
0.212	46		
0.15	40		
0.063	31		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	32.0		
Sand	37.0		
Silt & Clay	31.0		

Grading Analysis		
D60 D10	0.70	
Uniformity Coefficient N/A		

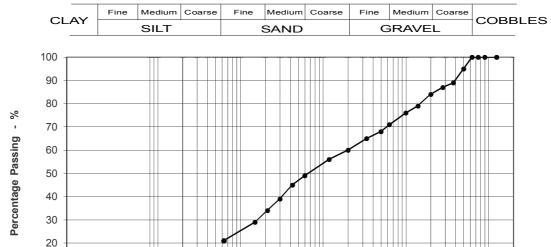
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8733
Contract No:	5414	Hole ID:	BH3
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	13
Sample	Brown very clayey SAND and GRAVEL	Depth (m):	4.00 - 4.70
Description:		Date Tested:	05/12/2013

0.06 Particle Size - mm

0.03

0.6

N

ი

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	89		
28	87		
20	84		
14	79		
10	76		
6.3	71		
5	68		
3.35	65		
2	60		
1.18	56		
0.6	49		
0.425	45		
0.3	39		
0.212	34		
0.15	29		
0.063	21		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

20

60

200

Sample Proportions				
Cobbles	0.0			
Gravel	40.0			
Sand	39.0			
Silt & Clay	21.0			

Grading Analysis			
D60 D10	2.00		
Uniformity Coefficient	N/A		

Date:

09/12/2013

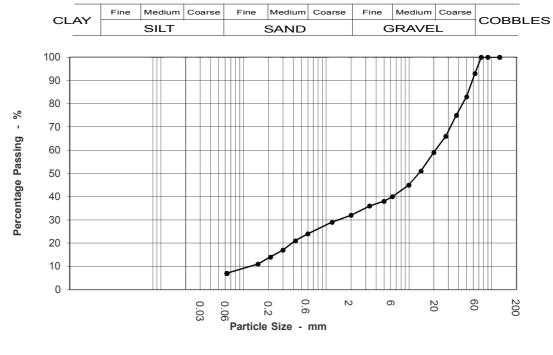
Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used

10 0


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8739
Contract No:	5414	Hole ID:	BH4
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	4
Sample	Purplish brown clayey very sandy GRAVEL with cobbles	Depth (m):	1.20 - 1.90
Description:		Date Tested:	04/12/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	93		
50	83		
37.5	75		
28	66		
20	59		
14	51		
10	45		
6.3	40		
5	38		
3.35	36		
2	32		
1.18	29		
0.6	24		
0.425	21		
0.3	17		
0.212	14		
0.15	11		
0.063	7		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	7.0		
Gravel	61.0		
Sand	25.0		
Silt & Clay	7.0		

Grading Analysis			
D60	21.14		
D10	0.13		
Uniformity Coefficient	164.86		

Sheet 1 of 1

Remarks:

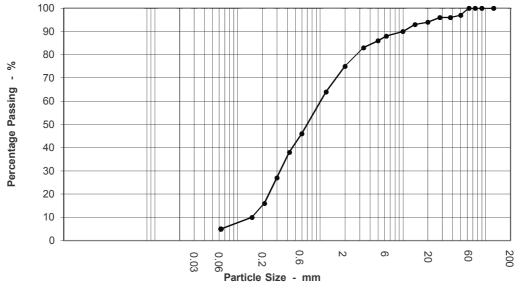
Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8742	
Contract No:	5414	Hole ID:	BH4	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	9	
Sample	Greyish brown slightly clayey very gravelly SAND	Depth (m):	3.20 - 5.00	
Description:		Date Tested:	25/11/2013	

Sievir	Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	97			
37.5	96			
28	96			
20	94			
14	93			
10	90			
6.3	88			
5	86			
3.35	83			
2	75			
1.18	64			
0.6	46			
0.425	38			
0.3	27			
0.212	16			
0.15	10			
0.063	5			

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	25.0		
Sand	70.0		
Silt & Clay	5.0		

Grading Analysis		
D60	1.05	
D10	0.15	
Uniformity Coefficient	7.01	

Date:

09/12/2013

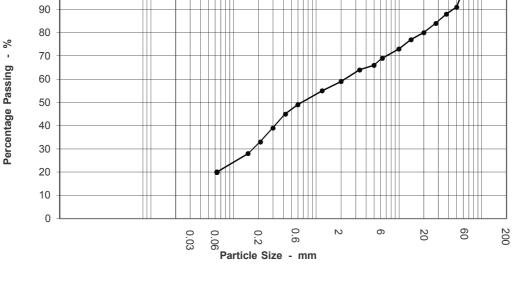
Approved: S Unit 10 Wessex Road B

Checked and

Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshire Council	Lab Sample No:	S8743
Contract No:	5414	Hole ID:	BH4
Contract Name:	Stonehaven FAS	Sample Type:	В
0		Sample No:	13
Sample	Dark brown sandy gravelly silty CLAY	Depth (m):	5.10 - 5.40
Description:	Date Tested:	28/11/2013	

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	88		
28	84		
20	80		
14	77		
10	73		
6.3	69		
5	66		
3.35	64		
2	59		
1.18	55		
0.6	49		
0.425	45		
0.3	39		
0.212	33		
0.15	28		
0.063	20		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	41.0	
Sand	39.0	
Silt & Clay	20.0	

Grading Analysis		
D60 D10	2.27	
Uniformity Coefficient	N/A	

Date:

09/12/2013

Checked andAgata K-RocheApproved:Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

90 Clause 9.2		
Aberdeenshire Council	Lab Sample No:	S8744
5414	Hole ID:	BH4
Stonehaven FAS	Sample Type:	В
	Sample No:	15
Brown sandy gravelly CLAY	Depth (m):	5.50 - 5.90
	Date Tested:	27/11/2013
	Aberdeenshire Council 5414 Stonehaven FAS	Aberdeenshire CouncilLab Sample No:5414Hole ID:Stonehaven FASSample Type:Brown sandy gravelly CLAYDepth (m):

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	91		
28	87		
20	82		
14	78		
10	75		
6.3	72		
5	71		
3.35	69		
2	65		
1.18	63		
0.6	59		
0.425	55		
0.3	50		
0.212	44		
0.15	39		
0.063	31		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	35.0	
Sand	34.0	
Silt & Clay	31.0	

Grading Analysis		
D60 D10	0.75	
Uniformity Coefficient	N/A	

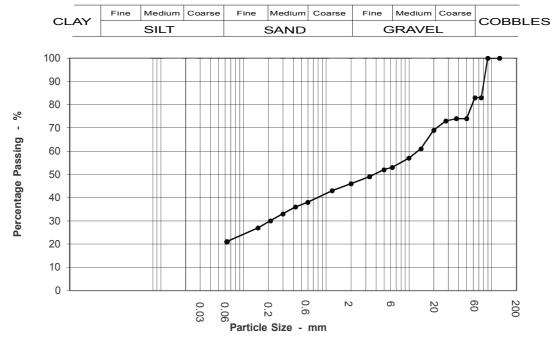
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8746
Contract No:	5414	Hole ID:	BH4
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	25
Sample	Brown clayey very sandy GRAVEL with cobbles	Depth (m):	8.50 - 8.70
Description:		Date Tested:	02/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	83		
63	83		
50	74		
37.5	74		
28	73		
20	69		
14	61		
10	57		
6.3	53		
5	52		
3.35	49		
2	46		
1.18	43		
0.6	38		
0.425	36		
0.3	33		
0.212	30		
0.15	27		
0.063	21		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	17.0		
Gravel	37.0		
Sand	25.0		
Silt & Clay	21.0		

Grading Analysis		
D60 D10	13.00	
Uniformity Coefficient	N/A	

Date:

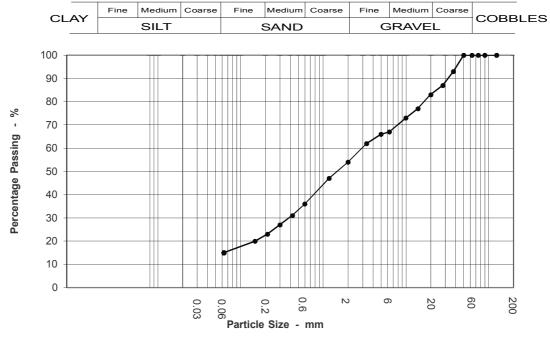
09/12/2013

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8747
Contract No:	5414	Hole ID:	BH4
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	28
Sample	Greyish brown and brown clayey sandy GRAVEL	Depth (m):	9.20 - 10.00
Description:		Date Tested:	05/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	87		
20	83		
14	77		
10	73		
6.3	67		
5	66		
3.35	62		
2	54		
1.18	47		
0.6	36		
0.425	31		
0.3	27		
0.212	23		
0.15	20		
0.063	15		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	46.0		
Sand	39.0		
Silt & Clay	15.0		

Grading Analysis		
D60 D10	3.01	
Uniformity Coefficient	N/A	

Date:

09/12/2013

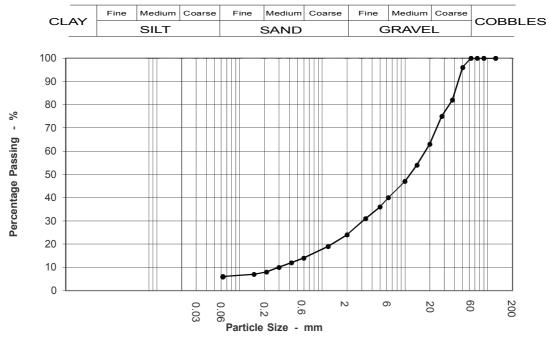
1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8748	
Contract No:	5414	Hole ID:	BH5	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	3	
Sample	Brown slightly clayey sandy GRAVEL	Depth (m):	1.20 - 2.00	
Description:		Date Tested:	05/12/2013	

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	96			
37.5	82			
28	75			
20	63			
14	54			
10	47			
6.3	40			
5	36			
3.35	31			
2	24			
1.18	19			
0.6	14			
0.425	12			
0.3	10			
0.212	8			
0.15	7			
0.063	6			

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	0.0			
Gravel	76.0			
Sand	18.0			
Silt & Clay	6.0			

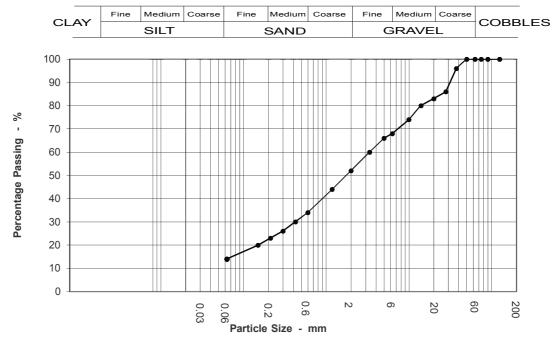
Grading Analysis			
D60	18.00		
D10	0.30		
Uniformity Coefficient	60.00		

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8752	
Contract No:	5414	Hole ID:	BH5	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	5	
Sample	Grey and yellowish brown clayey very sandy GRAVEL	Depth (m):	2.70 - 3.30	
Description:		Date Tested:	04/12/2013	

Sieving		Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm	70 T assing	mm	70 T assing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	96			
28	86			
20	83			
14	80			
10	74			
6.3	68			
5	66			
3.35	60			
2	52			
1.18	44			
0.6	34			
0.425	30			
0.3	26			
0.212	23			
0.15	20			
0.063	14			

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	48.0		
Sand	38.0		
Silt & Clay	14.0		

Grading Analysis			
D60 D10	3.35		
Uniformity Coefficient	N/A		

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Senior Technician

Date: 09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8751	
Contract No:	5414	Hole ID:	BH5	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	4	
Sample	Brownish grey slightly silty very gravelly SAND	Depth (m):	2.00 - 2.70	
Description:		Date Tested:	05/12/2013	

N

ი

0		0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.6
			Particl	e Size -	mm
Sievir	ng	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	100				
75	100				
63	100				
50	100				
37.5	96				
28	95				
20	90				
14	84				
10	77				
6.3	67				
5	63				
3.35	56				
2	46				
1.18	37				
0.6	28				
0.425	25				
0.3	21				
0.212	18				
0.15	15				
0.063	9]	Uı

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions			
Cobbles	0.0		
Gravel	54.0		
Sand	37.0		
Silt & Clay	9.0		

Grading Analysis		
D60	4.29	
D10	0.08	
Uniformity Coefficient	55.39	

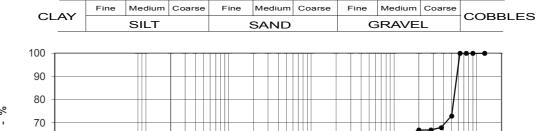
Date:

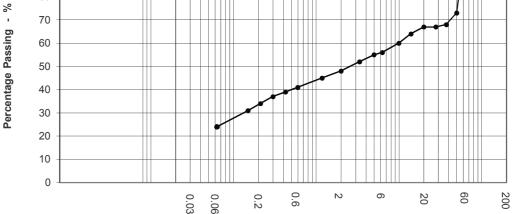
09/12/2013

Remarks:

Checked and Approved:

Agata K-Roche Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Whole sample used

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8738
Contract No:	5414	Hole ID:	BH3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	29
Sample	Brown and greyish brown slightly sandy gravelly CLAY	Depth (m):	9.50 - 9.75
Description:		Date Tested:	28/11/2013

0			
Particle	Size	-	mm

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	73		
37.5	68		
28	67		
20	67		
14	64		
10	60		
6.3	56		
5	55		
3.35	52		
2	48		
1.18	45		
0.6	41		
0.425	39		
0.3	37		
0.212	34		
0.15	31		
0.063	24		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	52.0	
Sand	24.0	
Silt & Clay	24.0	

Grading Analysis		
D60 D10	10.00	
Uniformity Coefficient	N/A	

Date:

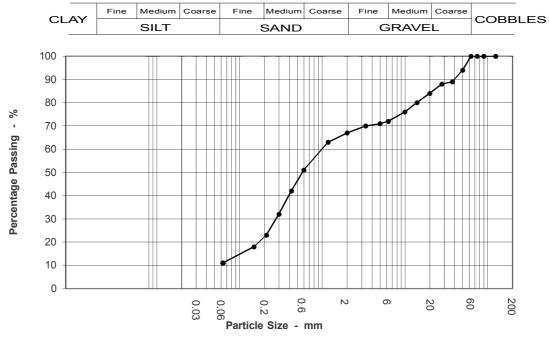
09/12/2013

Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8754
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	8
Sample	Grey silty gravelly SAND	Depth (m):	3.45 - 3.80
Description:		Date Tested:	28/11/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	94		
37.5	89		
28	88		
20	84		
14	80		
10	76		
6.3	72		
5	71		
3.35	70		
2	67		
1.18	63		
0.6	51		
0.425	42		
0.3	32		
0.212	23		
0.15	18		
0.063	11		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	33.0	
Sand	56.0	
Silt & Clay	11.0	

Grading Analysis		
D60 D10	1.04	
Uniformity Coefficient	N/A	

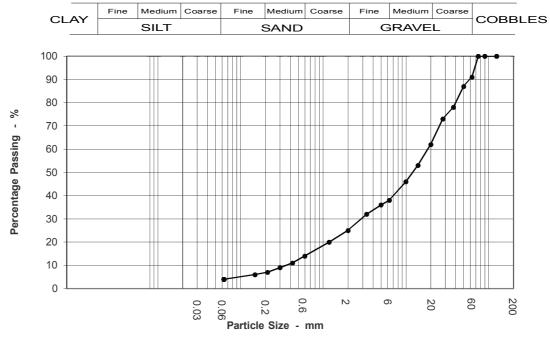
Date:

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Sheet 1 of 1


Remarks:

09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8755
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	12
Sample	Brown sandy GRAVEL with cobbles	Depth (m):	5.00 - 5.50
Description:		Date Tested:	25/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	87		
37.5	78		
28	73		
20	62		
14	53		
10	46		
6.3	38		
5	36		
3.35	32		
2	25		
1.18	20		
0.6	14		
0.425	11		
0.3	9		
0.212	7		
0.15	6		
0.063	4		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions			
Cobbles	9.0		
Gravel	66.0		
Sand	21.0		
Silt & Clay	4.0		

Grading Analysis		
D60	18.67	
D10	0.36	
Uniformity Coefficient	51.49	

Date:

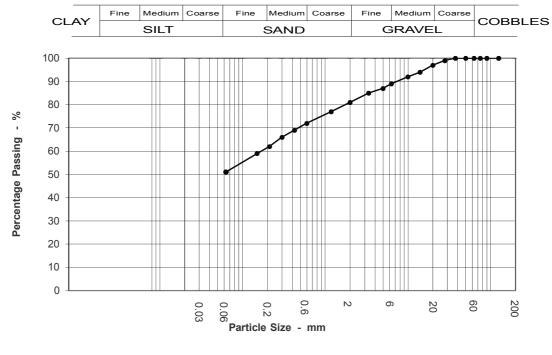
09/12/2013

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8756
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	15
Sample	Grey slightly gravelly slightly sandy SILT	Depth (m):	5.60 - 6.00
Description:		Date Tested:	04/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	97		
14	94		
10	92		
6.3	89		
5	87		
3.35	85		
2	81		
1.18	77		
0.6	72		
0.425	69		
0.3	66		
0.212	62		
0.15	59		
0.063	51		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	19.0		
Sand	30.0		
Silt & Clay	51.0		

Grading Analysis		
D60 D10	0.17	
Uniformity Coefficient	N/A	

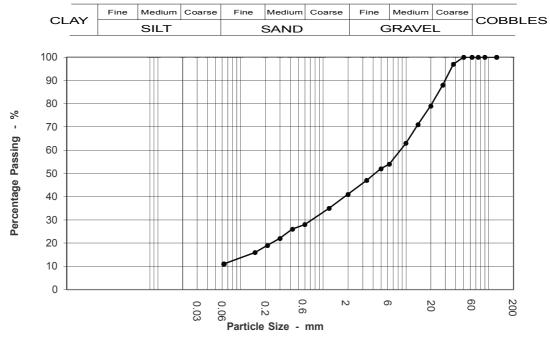
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8757
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	21
Sample	Light brown silty very sandy GRAVEL	Depth (m):	8.25 - 9.30
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	97		
28	88		
20	79		
14	79 71		
	63		
10	54		
6.3			
5	52		
3.35	47		
2	41		
1.18	35		
0.6	28		
0.425	26		
0.3	22		
0.212	19		
0.15	16		
0.063	11		

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions					
Cobbles	0.0				
Gravel	59.0				
Sand	30.0				
Silt & Clay	11.0				

Grading Analysis				
D60 D10	8.77			
Uniformity Coefficient	N/A			

Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client: Contract No: Contract Name: Sample Description:	5414 Stoneha	enshire Co aven FAS		andy GRA\	/EL with cobble	Lab Sam Hole ID: Sample T Sample N Depth (m Date Tes	Гуре: No: I):	S8759 BH5 B 25 9.40 - 10.00 02/12/2013
	CI		ne Medium Coa	rse Fine	Medium Coarse	Fine Mediu	ım Coarse	COBBLES
			SILT		SAND	GRAV	/EL	
	100 -							
	90 -							
	80 -							
% -								
ssir	60 -							
Ра	50 -							
Percentage Passing	4 0 -							
ent	40							
erc	30 -							
ш.	20 -							
	10 -							
	10							
	0 -		0.0	0	0. 2 0. 2	ა თ	20 60	200
	Sievin	g	Sediment	Particle	o O ™ N O ™ e Size - mm	Test M	lethod	200
	Sievin cle Size	9 % Passing	Sediment Particle Size	Particle	e Size - mm	Test M BS 1377 : F	1ethod Part 2 : 1990	
m	Sievin Sie Size	% Passing	Sediment	Particle	e Size - mm	Test N BS 1377 : F Sieving	1ethod Part 2 : 1990 Clause D	epth (m):
m 1	Sievin sle Size nm 25	% Passing 100	Sediment Particle Size	Particle	e Size - mm	Test M BS 1377 : F	1ethod Part 2 : 1990	epth (m):
n 1 5	Sievin Sie Size	% Passing	Sediment Particle Size	Particle	e Size - mm	Test N BS 1377 : F Sieving	1ethod Part 2 : 1990 Clause D	epth (m):
1 5 6	Sievin cle Size nm 25 90 75 63	% Passing 100 100 100 87	Sediment Particle Size	Particle	e Size - mm	Test N BS 1377 : F Sieving	1ethod Part 2 : 1990 Clause D	epth (m):
1 5 6	Sievin cle Size nm 25 90 75 63 50	% Passing 100 100 100 87 80	Sediment Particle Size	Particle	e Size - mm	Test N BS 1377 : F Sieving	1ethod Part 2 : 1990 Clause D	epth (m):
m 1 6 8 8 8	Sievin Sle Size nm 225 90 75 63 50 7.5	% Passing 100 100 100 87 80 77	Sediment Particle Size	Particle	e Size - mm	Test M BS 1377 : F Sieving imentation	1ethod Part 2 : 1990 Clause D N/	epth (m):
m 1 6 5 6 8 3	Sievin Sle Size nm 25 90 75 63 50 7.5 28	% Passing 100 100 87 80 77 72	Sediment Particle Size	Particle	e Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr	1ethod Part 2 : 1990 Clause D N/	epth (m): A
m 1 6 8 3	Sievin Sle Size nm 225 90 75 63 50 7.5	% Passing 100 100 100 87 80 77	Sediment Particle Size	Particle	e Size - mm	Test M BS 1377 : F Sieving imentation	fethod Part 2 : 1990 Clause D N/	epth (m):
m 1 6 8 3 3	Sievin Sle Size nm 25 90 75 63 50 7.5 28 20 14 10	% Passing 100 100 87 80 77 72 69 63 59	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand	1ethod Part 2 : 1990 Clause D N/	epth (m): /A 13.0 42.0 24.0
m 1 6 8 3 3 2 6	Sievin Sle Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3	% Passing 100 100 87 80 77 72 69 63 59 54	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel	1ethod Part 2 : 1990 Clause D N/	epth (m): A 13.0 42.0
m 1 6 8 3 2 2 6	Sievin Sle Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5	% Passing 100 100 87 80 77 72 69 63 59 54 51	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand	1ethod Part 2 : 1990 Clause D N/	epth (m): /A 13.0 42.0 24.0
m 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Sievin Sle Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35	% Passing 100 100 87 80 77 72 69 63 59 63 59 54 51 49	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand	1ethod Part 2 : 1990 Clause D N/	epth (m): /A 13.0 42.0 24.0
m 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Sievin Sle Size 11m 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35 2	% Passing 100 100 87 80 77 72 69 63 59 63 59 54 51 49 45	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand	1ethod Part 2 : 1990 Clause D N/	epth (m): /A 13.0 42.0 24.0
m 1 9 1 3 3 2 2 2 3 3 3 1 1	Sievin Sle Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35	% Passing 100 100 87 80 77 72 69 63 59 63 59 54 51 49	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand Silt & Clay	1ethod Part 2 : 1990 Clause D N/	epth (m): /A 13.0 42.0 24.0
m 1 6 3 3 2 2 3 6 6 3 1 0 0	Sievin Sie Size 111 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35 2 .18 0.6 425	% Passing 100 100 87 80 77 72 69 63 59 54 51 49 45 41 36 33	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand Silt & Clay Grading	Analysis	epth (m): /A 13.0 42.0 24.0 21.0
m 1 6 3 3 6 3 4 6 3 1 0 0 0 0	Sievin le Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35 2 .18).6 425).3	% Passing 100 100 87 80 77 72 69 63 59 63 59 63 59 54 51 49 45 41 36 33 31	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand Silt & Clay Grading D60	Analysis	epth (m): /A 13.0 42.0 24.0
m 1 6 8 3 3 2 6 8 3 6 6 3. 1. 0. 0. 0. 0.	Sievin le Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35 2 .18).6 425).3 212	% Passing 100 100 87 80 77 72 69 63 59 63 59 63 59 54 51 49 45 41 36 33 31 29	Sediment Particle Size	Particle	Size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand Silt & Clay Grading	Analysis	epth (m): /A 13.0 42.0 24.0 21.0
m 1 6 8 3 3 2 3 4 6 6 3 1 5 6 6 3 1 5 6 6 1 5 6 6 1 5 6 6 1 5 6 6 1 5 1 5	Sievin le Size nm 25 90 75 63 50 7.5 28 20 14 10 5.3 5 .35 2 .18).6 425).3	% Passing 100 100 87 80 77 72 69 63 59 63 59 63 59 54 51 49 45 41 36 33 31	Sediment Particle Size	Particle	size - mm	Test M BS 1377 : F Sieving imentation Sample Pr Cobbles Gravel Sand Silt & Clay Grading D60	Part 2 : 1990 Clause D N/ roportions Analysis 1	epth (m): /A 13.0 42.0 24.0 21.0

Remarks:

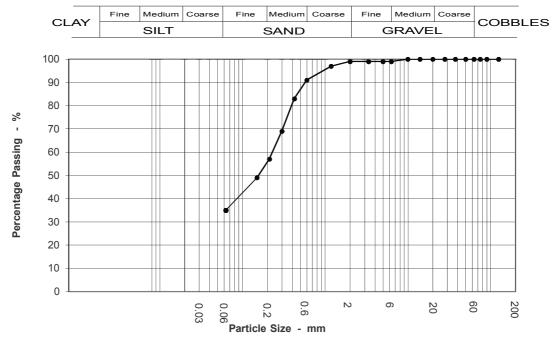
Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Date:

09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8749
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	27
Sample	Purplish grey sandy clayey SILT	Depth (m):	10.00 - 10.50
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99		
2	99		
1.18	97		
0.6	91		
0.425	83		
0.3	69		
0.212	57		
0.15	49		
0.063	35		

Agata K-Roche

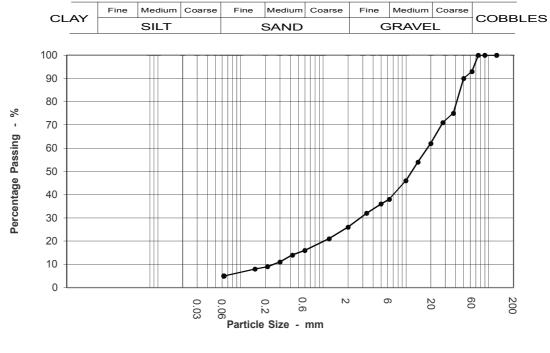
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions					
Cobbles	0.0				
Gravel	1.0				
Sand	64.0				
Silt & Clay	35.0				

Grading Analysis				
D60 D10	0.23			
Uniformity Coefficient	N/A			


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8760
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown slightly clayey very sandy GRAVEL with cobbles	Depth (m):	1.20 - 2.00
Description:		Date Tested:	04/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	93		
50	90		
37.5	75		
28	71		
20	62		
14	54		
10	46		
6.3	38		
5	36		
3.35	32		
2	26		
1.18	21		
0.6	16		
0.425	14		
0.3	11		
0.212	9		
0.15	8		
0.063	5		

Test Method					
BS 1377 : Part 2 : 1990					
Sieving	Clause Depth (m):				
Sedimentation	N/A				

Sample Proportions					
Cobbles	7.0				
Gravel	67.0				
Sand	21.0				
Silt & Clay	5.0				

Grading Analysis						
D60	18.50					
D10	0.26					
Uniformity Coefficient	72.27					

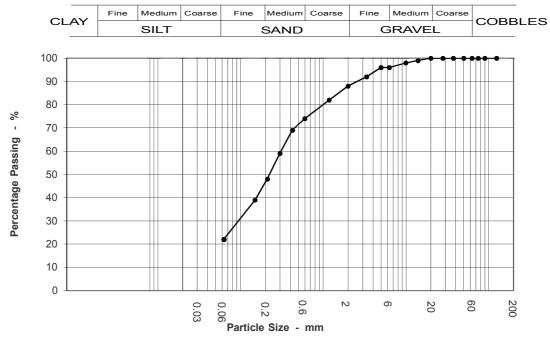
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8761
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Black slightly gravelly sandy organic SILT	Depth (m):	2.35 - 2.70
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	98		
6.3	96		
5	96		
3.35	92		
2	88		
1.18	82		
0.6	74		
0.425	69		
0.3	59		
0.212	48		
0.15	39		
0.063	22		

Test Method					
BS 1377 : F	Part 2 : 1990				
Sieving	Clause Depth (m):				
Sedimentation	N/A				

Sample Proportions						
Cobbles	0.0					
Gravel	12.0					
Sand	66.0					
Silt & Clay	22.0					

Grading Analysis					
D60 D10	0.31				
Uniformity Coefficient	N/A				

Date:

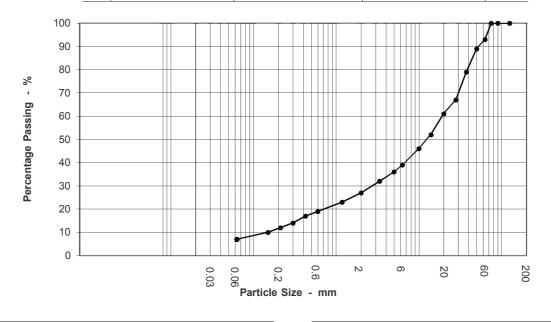
09/12/2013

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshire Council 5414 Stonehaven FAS Light brown and grey clayey sandy GRAVEL with cobbles						Aberdeenshire Council Lab Sample No:		e No:	S8762	
Contract No:								Hole ID: Sample Type: Sample No: Depth (m):		BH6 B	
Contract Name:											
Sample										10	
•							bbles			3.10 - 3.80	
Description:								Date	Tested	d:	02/12/2013
	CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES
	OLAI		SILT			SAND		G	BRAVE	L	COBBLES

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	93		
50	89		
37.5	79		
28	67		
20	61		
14	52		
10	46		
6.3	39		
5	36		
3.35	32		
2	27		
1.18	23		
0.6	19		
0.425	17		
0.3	14		
0.212	12		
0.15	10		
0.063	7		

Whole sample used

Agata K-Roche

Senior Technician

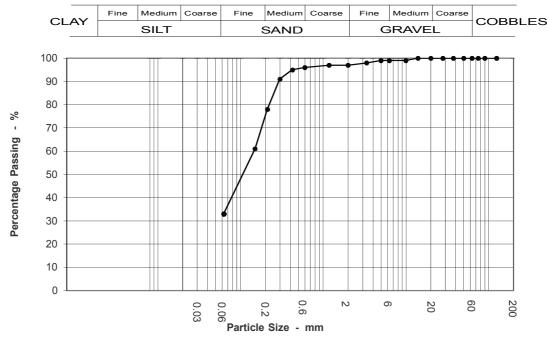
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method					
BS 1377 : F	Part 2 : 1990				
Sieving	Clause Depth (m):				
Sedimentation	N/A				

Sample Proportions			
Cobbles	7.0		
Gravel	66.0		
Sand	20.0		
Silt & Clay	7.0		

Grading Analysis		
D60	19.33	
D10	0.15	
Uniformity Coefficient	128.89	

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8764
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	15
Sample	Greenish grey slightly gravelly clayey SAND	Depth (m):	4.80 - 5.00
Description:		Date Tested:	02/12/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	99		
6.3	99		
5	99		
3.35	98		
2	97		
1.18	97		
0.6	96		
0.425	95		
0.3	91		
0.212	78		
0.15	61		
0.063	33		

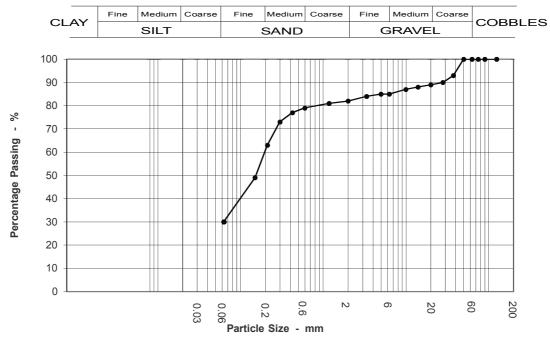
Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	3.0		
Sand	64.0		
Silt & Clay	33.0		

Grading Analysis		
D60 D10	0.15	
Uniformity Coefficient	N/A	

Date:

09/12/2013


Checked and	Agata K-Roche	
Approved:	Senior Technician	

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8766
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Greenish grey and purplish brown slightly gravelly sandy silty	Sample No:	20
-	CLAY	Depth (m):	6.75 - 7.50
Description:	CLAT	Date Tested:	28/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	90		
20	89		
14	88		
10	87		
6.3	85		
5	85		
3.35	84		
2	82		
1.18	81		
0.6	79		
0.425	77		
0.3	73		
0.212	63		
0.15	49		
0.063	30		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	18.0		
Sand	52.0		
Silt & Clay	30.0		

Grading Analysis		
D60 D10	0.20	
Uniformity Coefficient	N/A	

Date:

09/12/2013

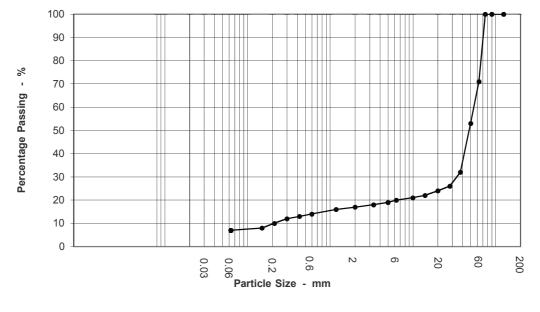
Approved: Senior Technician Unit 10 Wessex Road Bourne end Buckin

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used

Remarks:


Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

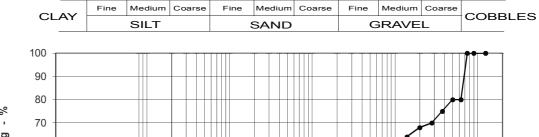
BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8768
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	3
Sample	Dark brown clayey sandy GRAVEL with frequent cobbles	Depth (m):	0.80 - 1.20
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	71		
50	53		
37.5	32		
28	26		
20	24		
14	22		
10	21		
6.3	20		
5	19		
3.35	18		
2	17		
1.18	16		
0.6	14		
0.425	13		
0.3	12		
0.212	10		
0.15	8		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	29.0		
Gravel	54.0		
Sand	10.0		
Silt & Clay	7.0		

Grading Analysis		
D60 D10	55.06 0.21	
Uniformity Coefficient	259.70	


Remarks:


Checked and	Agata K-Roche	
Approved:	Senior Technician	
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT		

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8769
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	6
Sample	Brown silty very sandy GRAVEL with frequent cobbles	Depth (m):	1.40 - 2.00
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	80		
50	80		
37.5	75		
28	70		
20	68		
14	64		
10	60		
6.3	54		
5	52		
3.35	48		
2	43		
1.18	39		
0.6	33		
0.425	30		
0.3	25		
0.212	21		
0.15	18		
0.063	12		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	20.0		
Gravel	37.0		
Sand	31.0		
Silt & Clay	12.0		

Grading Analysis		
D60 D10	10.00	
Uniformity Coefficient	N/A	

Sheet 1 of 1

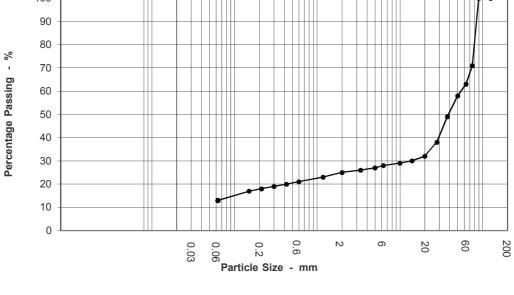
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8770
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	10
Sample	Reddish brown clayey sandy GRAVEL with frequent cobbles	Depth (m):	2.30 - 3.00
Description:		Date Tested:	27/11/2013

Sievir	Sieving Sedimentation		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	71		
63	63		
50	58		
37.5	49		
28	38		
20	32		
14	30		
10	29		
6.3	28		
5	27		
3.35	26		
2	25		
1.18	23		
0.6	21		
0.425	20		
0.3	19		
0.212	18		
0.15	17		
0.063	13		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	37.0	
Gravel	38.0	
Sand	12.0	
Silt & Clay	13.0	

Grading Analysis		
D60 D10	55.20	
Uniformity Coefficient	N/A	

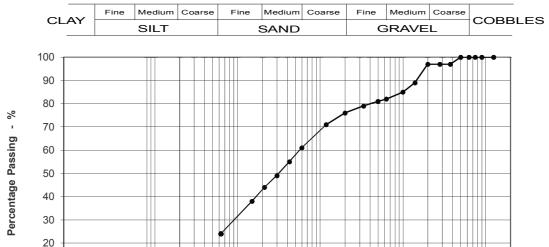
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Senior Technician

Date: 09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8772
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Brownish grey very silty very gravelly SAND	Depth (m):	3.60 - 4.00
Description:		Date Tested:	29/11/2013

N

ი

· · ·		0.03	0		0.6
			Particl	e Size -	mm
Sievir	ng	Sediment	tation	1	
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				
90	100				
75	100				
63	100				
50	100				
37.5	97				-
28	97				
20	97				
14	89				
10	85				
6.3	82				
5	81				
3.35	79				
2	76				
1.18	71				F
0.6	61				
0.425	55				
0.3	49				
0.212	44				
0.15	38				
0.063	24				U

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	24.0	
Sand	52.0	
Silt & Clay	24.0	

Grading Analysis		
D60 D10	0.57	
Uniformity Coefficient	N/A	

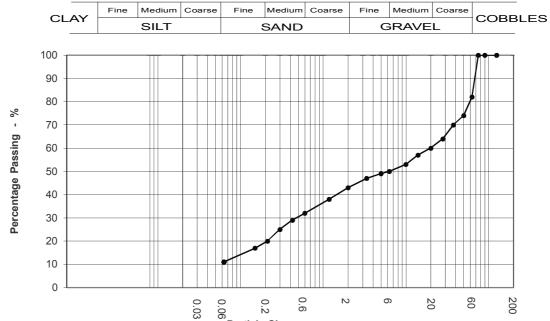
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Whole sample used

10 0


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8774	
Contract No:	5414	Hole ID:	Bh8	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	5	
Sample	Brown very sandy GRAVEL with rootlets and cobbles	Depth (m):	0.60 - 1.20	
Description:		Date Tested:	05/12/2013	

Particle	Size	-	mm

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	82		
50	74		
37.5	70		
28	64		
20	60		
14	57		
10	53		
6.3	50		
5	49		
3.35	47		
2	43		
1.18	38		
0.6	32		
0.425	29		
0.3	25		
0.212	20		
0.15	17		
0.063	11		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	18.0			
Gravel	39.0			
Sand	32.0			
Silt & Clay	11.0			

Grading Analysis				
D60 D10	20.00			
Uniformity Coefficient	N/A			

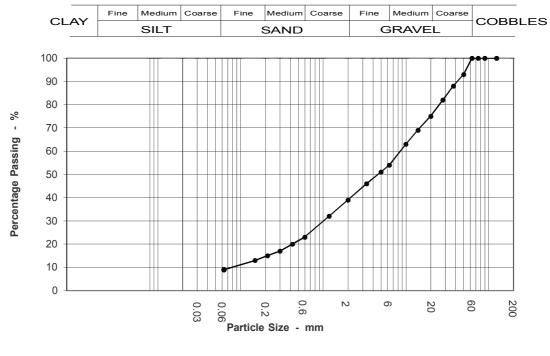
Date:

09/12/2013

Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8775
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Brown clayey very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	05/12/2013

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiriy	mm	70 T 8551119
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	88		
28	82		
20	75		
14	69		
10	63		
6.3	54		
5	51		
3.35	46		
2	39		
1.18	32		
0.6	23		
0.425	20		
0.3	17		
0.212	15		
0.15	13		
0.063	9		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	0.0			
Gravel	61.0			
Sand	30.0			
Silt & Clay	9.0			

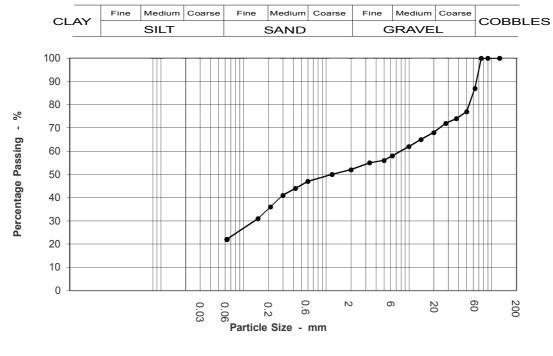
Grading Analysis				
D60	8.77			
D10	0.08			
Uniformity Coefficient	103.44			

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8776
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	В
Commis		Sample No:	11
Sample	Brown slightly sandy gravelly CLAY with cobbles	Depth (m):	2.80 - 3.70
Description:		Date Tested:	28/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	87		
50	77		
37.5	74		
28	72		
20	68		
14	65		
10	62		
6.3	58		
5	56		
3.35	55		
2	52		
1.18	50		
0.6	47		
0.425	44		
0.3	41		
0.212	36		
0.15	31		
0.063	22		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	13.0		
Gravel	35.0		
Sand	30.0		
Silt & Clay	22.0		

Grading Analysis		
D60 D10	8.15	
Uniformity Coefficient	N/A	

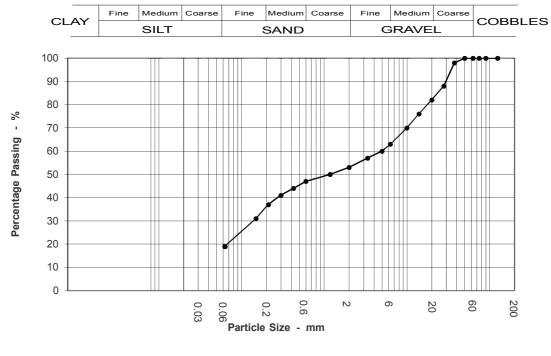
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8777
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Brown clayey very sandy GRAVEL	Depth (m):	3.70 - 4.00
Description:		Date Tested:	04/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	98		
28	88		
20	82		
14	76		
10	70		
6.3	63		
5	60		
3.35	57		
2	53		
1.18	50		
0.6	47		
0.425	44		
0.3	41		
0.212	37		
0.15	31		
0.063	19		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	47.0		
Sand	34.0		
Silt & Clay	19.0		

Grading Analysis		
D60 D10	5.00	
Uniformity Coefficient	N/A	

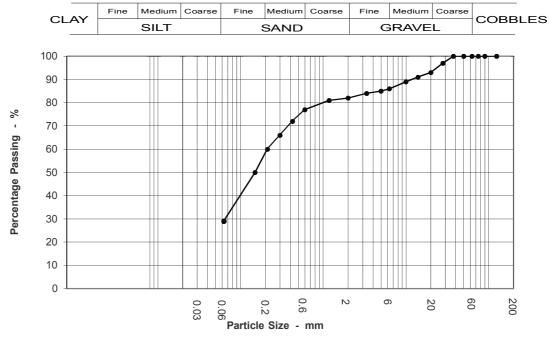
 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Date: 09/12/2013


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8778
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	15
Sample	Brown gravelly very clayey SAND	Depth (m):	4.00 - 4.40
Description:		Date Tested:	05/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	93		
14	91		
10	89		
6.3	86		
5	85		
3.35	84		
2	82		
1.18	81		
0.6	77		
0.425	72		
0.3	66		
0.212	60		
0.15	50		
0.063	29		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

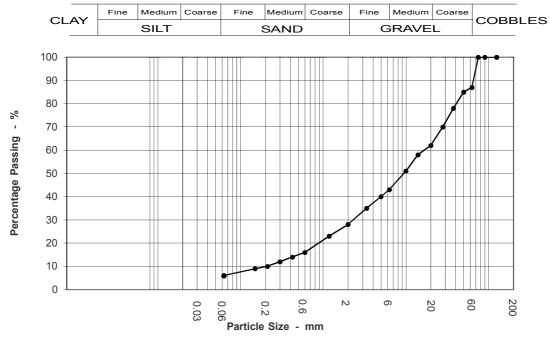
Sample Proportions			
Cobbles	0.0		
Gravel	18.0		
Sand	53.0		
Silt & Clay	29.0		

Grading Analysis		
D60 D10	0.21	
Uniformity Coefficient	N/A	

Date:

1489

Remarks:


Checked and	Agata K-Roche
Approved:	Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8782
Contract No:	5414	Hole ID:	BH9
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown very sandy GRAVEL with cobbles	Depth (m):	1.20 - 2.00
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	87		
50	85		
37.5	78		
28	70		
20	62		
14	58		
10	51		
6.3	43		
5	40		
3.35	35		
2	28		
1.18	23		
0.6	16		
0.425	14		
0.3	12		
0.212	10		
0.15	9		
0.063	6		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	13.0		
Gravel	59.0		
Sand	22.0		
Silt & Clay	6.0		

Grading Analysis		
D60	17.00	
D10	0.21	
Uniformity Coefficient	80.19	

Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Lab Sample No: Hole ID: Sample Type: Sample No: bles Depth (m): Date Tested:	S8786 BH9 B 9 2.50 - 3.00 05/12/2013
Coarse Fine Medium Coarse COB	
ν ο γ ο	200
n	mm

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	94		
50	90		
37.5	87		
28	84		
20	82		
14	80		
10	78		
6.3	76		
5	76		
3.35	75		
2	73		
1.18	70		
0.6	63		
0.425	58		
0.3	52		
0.212	46		
0.15	41		
0.063	30		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	6.0		
Gravel	21.0		
Sand	43.0		
Silt & Clay	30.0		

Grading Analysis		
D60 D10	0.50	
Uniformity Coefficient	N/A	

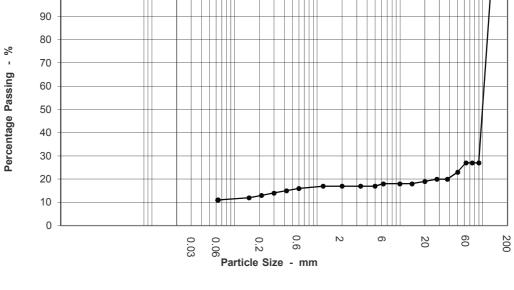
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8787
Contract No:	5414	Hole ID:	BH9
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Brown slightly gravelly slightly sandy CLAY and 1 core of	Sample No:	14
-		Depth (m):	4.20 - 5.00
Description:	grey SANDSTONE	Date Tested:	29/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	27		
75	27		
63	27		
50	23		
37.5	20		
28	20		
20	19		
14	18		
10	18		
6.3	18		
5	17		
3.35	17		
2	17		
1.18	17		
0.6	16		
0.425	15		
0.3	14		
0.212	13		
0.15	12		
0.063	11		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	73.0	
Gravel	10.0	
Sand	6.0	
Silt & Clay	11.0	

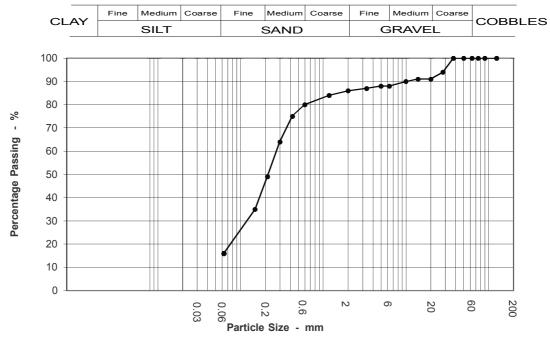
Grading Analysis		
D60 D10	105.82	
Uniformity Coefficient	N/A	

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8788
Contract No:	5414	Hole ID:	BH10
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	3
Sample	Brown silty gravelly SAND	Depth (m):	0.80 - 1.20
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	91		
14	91		
10	90		
6.3	88		
5	88		
3.35	87		
2	86		
1.18	84		
0.6	80		
0.425	75		
0.3	64		
0.212	49		
0.15	35		
0.063	16		

Agata K-Roche

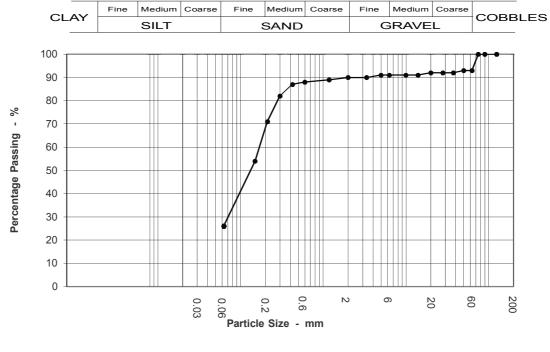
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	14.0	
Sand	70.0	
Silt & Clay	16.0	

Grading Analysis		
D60 D10	0.28	
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8789
Contract No:	5414	Hole ID:	BH10
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	4
Sample	Brown slightly gravelly silty SAND with cobbles	Depth (m):	1.20 - 2.00
Description:		Date Tested:	28/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	93		
50	93		
37.5	92		
28	92		
20	92		
14	91		
10	91		
6.3	91		
5	91		
3.35	90		
2	90		
1.18	89		
0.6	88		
0.425	87		
0.3	82		
0.212	71		
0.15	54		
0.063	26		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	7.0		
Gravel	3.0		
Sand	64.0		
Silt & Clay	26.0		

Grading Analysis		
D60 D10	0.17	
Uniformity Coefficient	N/A	

Date:

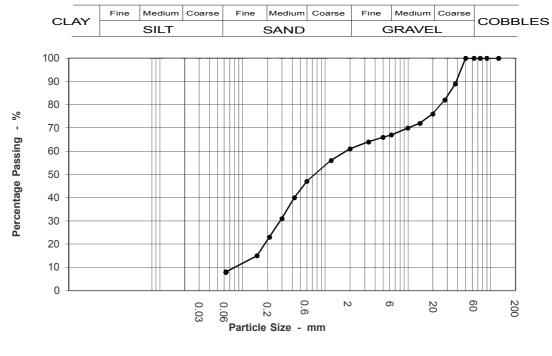
09/12/2013

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

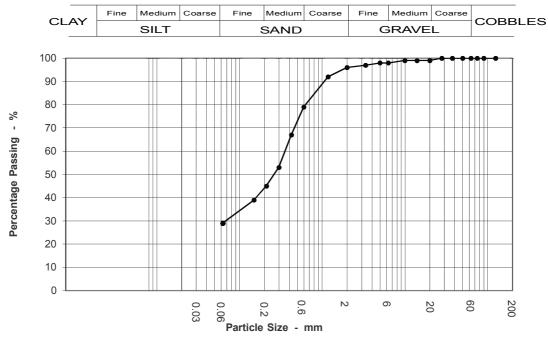
BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8791
Contract No:	5414	Hole ID:	BH10
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	6
Sample	Brownish grey slightly silty very gravelly SAND	Depth (m):	2.50 - 3.50
Description:		Date Tested:	28/11/2013

Sievir	Sieving		tation
Particle Size	% Passing	Particle Size	% Passing
mm		mm	
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	89		
28	82		
20	76		
14	72		
10	70		
6.3	67		
5	66		
3.35	64		
2	61		
1.18	56		
0.6	47		
0.425	40		
0.3	31		
0.212	23		
0.15	15		
0.063	8		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	39.0		
Sand	53.0		
Silt & Clay	8.0		

Grading Analysis		
D60	1.84	
D10	0.09	
Uniformity Coefficient	20.90	


Remarks:

Checked and	Agata K-Roche		
Approved:	Senior Technician		
Unit 10 Wessex Roa	d Bourne end Buckinghamshire SL8 5DT		

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8792
Contract No:	5414	Hole ID:	BH10
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	10
Sample	Brownish grey slightly gravelly clayey SAND	Depth (m):	4.50 - 5.00
Description:		Date Tested:	26/11/2013

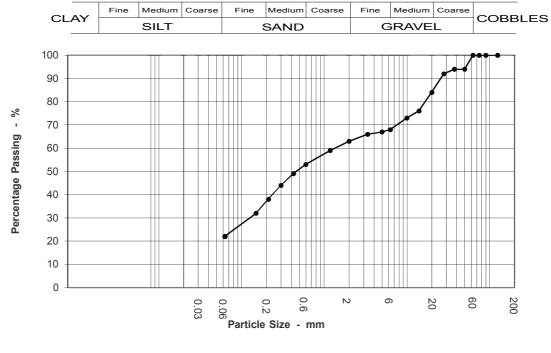
Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	99		
10	99		
6.3	98		
5	98		
3.35	97		
2	96		
1.18	92		
0.6	79		
0.425	67		
0.3	53		
0.212	45		
0.15	39		
0.063	29		

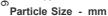
Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	4.0	
Sand	67.0	
Silt & Clay	29.0	

Grading Analysis			
D60 D10	0.36		
Uniformity Coefficient N/A			

Remarks:


Checked and	Agata K-Roche
Approved:	Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8793
Contract No:	5414	Hole ID:	BH11A
Contract Name:	Stonehaven FAS	Sample Type:	В
Comple		Sample No:	6
Sample	Brown and grey clayey very gravelly SAND with rootlets	Depth (m):	1.20 - 2.00
Description:		Date Tested:	26/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	94		
37.5	94		
28	92		
20	84		
14	76		
10	73		
6.3	68		
5	67		
3.35	66		
2	63		
1.18	59		
0.6	53		
0.425	49		
0.3	44		
0.212	38		
0.15	32		
0.063	22		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation N/A		

Sample Proportions		
Cobbles	0.0	
Gravel	37.0	
Sand	41.0	
Silt & Clay	22.0	

Grading Analysis		
D60 D10	1.39	
Uniformity Coefficient	N/A	

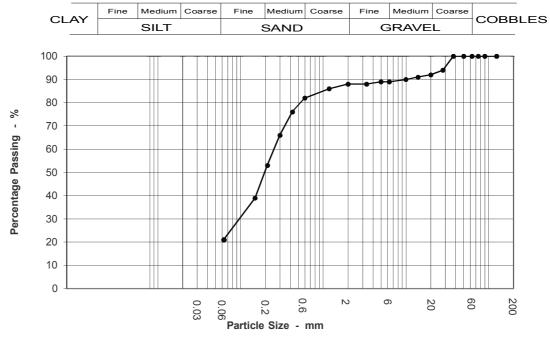
1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician

Date: 09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8794
Contract No:	5414	Hole ID:	BH11A
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	8
Sample	Brown gravelly silty SAND	Depth (m):	2.00 - 3.00
Description:		Date Tested:	02/12/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	94		
20	92		
14	91		
10	90		
6.3	89		
5	89		
3.35	88		
2	88		
1.18	86		
0.6	82		
0.425	76		
0.3	66		
0.212	53		
0.15	39		
0.063	21		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	12.0		
Sand	67.0		
Silt & Clay	21.0		

Grading Analysis			
D60 D10	0.26		
Uniformity Coefficient	N/A		

Date:

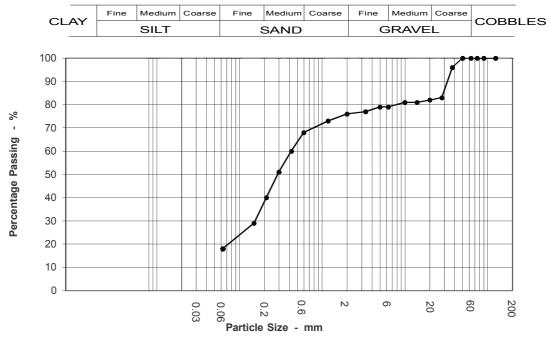
09/12/2013

1489

Senior Technician Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8795
Contract No:	5414	Hole ID:	BH11A
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	12
Sample Decerintion:	Brownish grey silty very gravelly SAND	Depth (m):	3.50 - 4.50
Description:		Date Tested:	26/11/2013

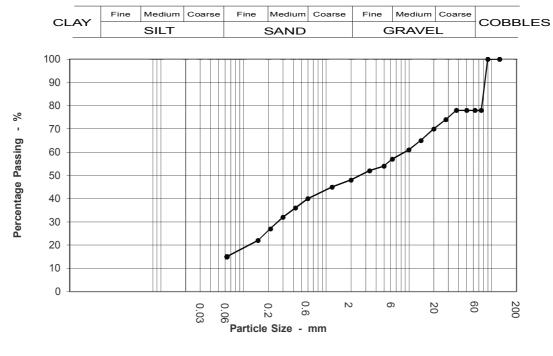
Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	83		
20	82		
14	81		
10	81		
6.3	79		
5	79		
3.35	77		
2	76		
1.18	73		
0.6	68		
0.425	60		
0.3	51		
0.212	40		
0.15	29		
0.063	18		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	24.0		
Sand	58.0		
Silt & Clay	18.0		

Grading Analysis			
D60 D10	0.43		
Uniformity Coefficient	N/A		

Checked and	Agata K-Roche	
Approved:	Senior Technician	


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8796
Contract No:	5414	Hole ID:	BH12
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	4
Sample	Brown clayey SAND and GRAVEL with frequent cobbles	Depth (m):	1.20 - 1.50
Description:		Date Tested:	27/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	78		
63	78		
50	78		
37.5	78		
28	74		
20	70		
14	65		
10	61		
6.3	57		
5	54		
3.35	52		
2	48		
1.18	45		
0.6	40		
0.425	36		
0.3	32		
0.212	27		
0.15	22		
0.063	15		

Test N	lethod
BS 1377 : F	Part 2 : 1990
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Propo	ortions
Cobbles	22.0
Gravel	30.0
Sand	33.0
Silt & Clay	15.0

Grading Ana	lysis
D60 D10	9.08
Uniformity Coefficient	N/A

Date:

09/12/2013

Checked andAgata K-RocheApproved:Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

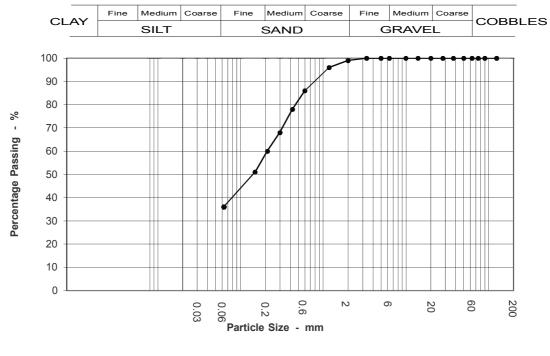
Sheet 1 of 1

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client: Contract No: Contract Nam Sample Description:	5414 e: Stone	00 Clause 9.2 Aberdeenshire Council 5414 Stonehaven FAS Pinkish brown slightly sandy gravelly silty CLAY with cobbles													Lab Sample No: Hole ID: Sample Type: Sample No: Depth (m): Date Tested:					:	S8798 BH12 B 10 2.00 - 2.50 29/11/2013					
	С		Fine		edium	Соа	rse	F	ine	Me SA	diun		oarse	• 1	Fine			um (/EL		se	С	DE	вВ	LE	s	
	100									0, (-				<u> </u>			-							
	100																				ľ	•				
	90																			/						
	80 %	-																	1							
	· 70																		\boldsymbol{I}				_			
	00 ⁰⁰	-																_/								
	5 0 5 0																									
	ge															لمر										
	40 enta												-	-		•										
	3 0																									
	20																						_			
	10							•																		
	0																									
	0					0.03	9	90 0		0.2		0.6	I	N		ი		20		60			200			
						3	č	ກ Pa	rticl	e Siz			n										0			
				Sedimentation							Test Method							l								
	Sievi	ing					atio	n]																
Pa	article Size	ing % Passi	ing	Parti	cle Si				sing					Sio				Part 2	2:19			th	(m):			
Pa				Parti					sing					Siev		137		Part 2		se D	Dep I/A	oth ((m):	:		
Pa	nrticle Size mm 125 90	% Passi 100 100		Parti	cle Si				sing						/ing	137		Part 2	2:19	se D		oth ((m):	:		
Pe	nticle Size mm 125 90 75	% Passi 100 100 92		Parti	cle Si				sing						/ing	137		Part 2	2:19	se D		oth ((m):	:		
Pa	article Size mm 125 90 75 63	% Passi 100 100 92 92		Parti	cle Si				sing						/ing	137		Part 2	2:19	se D		oth ((m):			
Pa	nticle Size mm 125 90 75	% Passi 100 100 92		Parti	cle Si				sing						ving entati	137 on	7 : F	Part 2	2 : 19 Clau	se [N		th ((m):			
Pa	rticle Size mm 125 90 75 63 50 37.5 28	% Passi 100 100 92 92 84 78 66		Parti	cle Si				sing					dime	/ing entati Sa	on	7 : F	Part 2	2 : 19 Clau	se [N	J/A		(m):			
Pa	rticle Size mm 125 90 75 63 50 37.5 28 20	% Passi 100 100 92 92 84 78 66 57		Parti	cle Si				sing					dime	ving entati Sa obble	on imples	7 : F	Part 2	2 : 19 Clau	se [N	I/A 8.	0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28	% Passi 100 100 92 92 84 78 66		Parti	cle Si				sing					dime Co Co	/ing entati Sa	on imples	7 : F	Part 2	2 : 19 Clau	se [N	J/A	0	(m):			
Pa	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3	% Passi 100 100 92 92 84 78 66 57 53 48 48		Parti	cle Si				sing					dime Co G	ving entati Sa obble Grave	137 on imp es	7 : F	Part 2	2 : 19 Clau	se [N	8. 56	0.0	(m):			
Pa	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5	% Passi 100 100 92 92 84 78 66 57 53 48 44 44		Parti	cle Si				sing					dime Co G	ving entati Sabble Grave Sand	137 on imp es	7 : F	Part 2	2 : 19 Clau	se [N	8. 56 22	0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39		Parti	cle Si				sing					dime Co G	ving entati Sabble Grave Sand	137 on imp es	7 : F	Part 2	2 : 19 Clau	se [N	8. 56 22	0.0	(m):			
Pa	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5	% Passi 100 100 92 92 84 78 66 57 53 48 44 44		Parti	cle Si				sing					dime Co G	ving entati Sabble Grave Sand	137 on imp es	7 : F	Part 2	2 : 19 Clau	se [N	8. 56 22	0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31		Parti	cle Si				sing					dime Co G	ing ntati Sa bbble Grave Sand & C	137 on mpl es	7 : F	Part 2	rtio	se [N	8. 56 22	0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29		Parti	cle Si				sing					Ca G Silt	ving ntati Sabble Grave Sand & C	137 on mpl es	7 : F	ropo	rtio	se [N ns	8. 56 22 14	0.0.0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29 26		Parti	cle Si				sing					Cc G Silt	ring ntati Sa bbble Grave Sand & C Q D60	137 on mpl es	7 : F	ropo	rtio	se [N ns	8. 56 22	0.0.0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29		Parti	cle Si				sing					Cc Cc Silt	ving ntati Sabble Grave Sand & C 0 000 D10	imples	Ie P	Part 2 (ropo	rtio	se [N ns	8. 56 22 14	0.0.0.0	(m):			
Pe	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212	% Passi 100 100 92 92 84 78 66 57 53 48 66 57 53 48 44 41 39 36 34 31 29 26 23		Parti	cle Si				sing					Cc Cc Silt	ving ntati Sabble Grave Sand & C 0 000 D10	imples	Ie P	Part 2 (ropo	rtio	se [N ns	8. 56 22 14	0 .0 .0 .0	(m):			
	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15 0.063	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29 26 23 20 14		Parti	cle Si				sing					Cc Cc Silt	ving ntati Sabble Grave Sand & C 0 000 D10	imples	Ie P	Part 2 (ropo	rtio	se [N ns	8. 56 22 14	0 .0 .0 .0	(m):			
	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15 0.063 Whole sam	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29 26 23 20 14		Parti	cle Si				sing					Cc Cc Silt	ving ntati Sabble Grave Sand & C 0 000 D10	imples	Ie P	Part 2 (ropo	rtio	se [N ns	8. 56 22 14	0 .0 .0 .0	(m):			
	rticle Size mm 125 90 75 63 50 37.5 28 20 14 10 6.3 5 3.35 2 1.18 0.6 0.425 0.3 0.212 0.15 0.063 Whole sam	% Passi 100 100 92 92 84 78 66 57 53 48 44 41 39 36 34 31 29 26 23 20 14		Parti	cle Si				sing					Cc Cc Silt	ving ntati Sabble Grave Sand & C 0 000 D10	imples	Ie P	Part 2 (ropo	rtio	se [N ns	8. 56 22 14	0 .0 .0 .0	(m):			

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Sheet 1 of 1

1489

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8802
Contract No:	5414	Hole ID:	BH12
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	18
Sample	Purplish brown slightly gravelly clayey SAND	Depth (m):	5.00 - 6.00
Description:		Date Tested:	27/11/2013

Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	99		
1.18	96		
0.6	86		
0.425	78		
0.3	68		
0.212	60		
0.15	51		
0.063	36		

Agata K-Roche

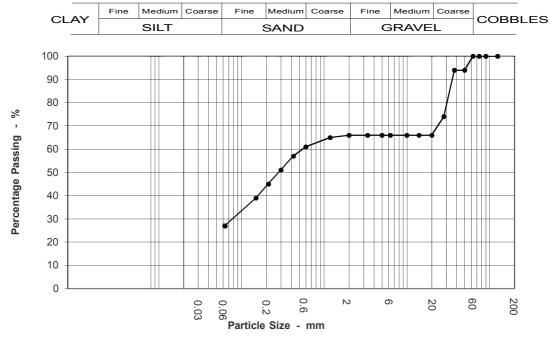
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	1.0	
Sand	63.0	
Silt & Clay	36.0	

Grading Analysis		
D60 D10	0.21	
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8803
Contract No:	5414	Hole ID:	BH12
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	22
Sample	Purplish brown clayey SAND and GRAVEL	Depth (m):	7.00 - 8.00
Description:		Date Tested:	02/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	94		
37.5	94		
28	74		
20	66		
14	66		
10	66		
6.3	66		
5	66		
3.35	66		
2	66		
1.18	65		
0.6	61		
0.425	57		
0.3	51		
0.212	45		
0.15	39		
0.063	27		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

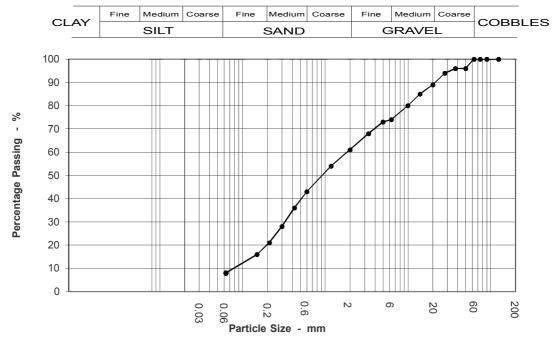
Sample Proportions		
Cobbles	0.0	
Gravel	34.0	
Sand	39.0	
Silt & Clay	27.0	

Grading Analysis		
D60 D10	0.56	
Uniformity Coefficient	N/A	

Date:

09/12/2013

1489


Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8805
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	3
Sample	Brown silty very gravelly SAND	Depth (m):	1.20 - 2.00
Description:		Date Tested:	28/11/2013

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	10 Fassing	mm	70 Fassing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	96		
28	94		
20	89		
14	85		
10	80		
6.3	74		
5	73		
3.35	68		
2	61		
1.18	54		
0.6	43		
0.425	36		
0.3	28		
0.212	21		
0.15	16		
0.063	8		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	39.0	
Sand	53.0	
Silt & Clay	8.0	

Grading Analysis		
D60	1.88	
D10	0.08	
Uniformity Coefficient	22.22	

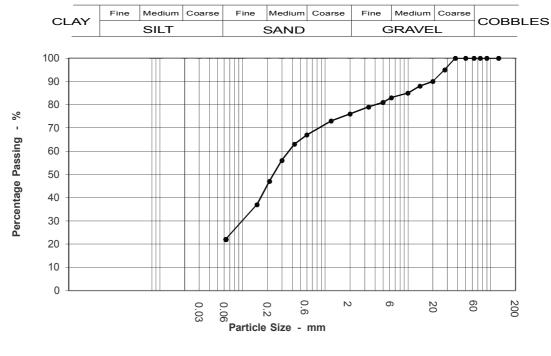
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8806
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown silty gravelly SAND	Depth (m):	2.00 - 3.00
Description:		Date Tested:	29/11/2013

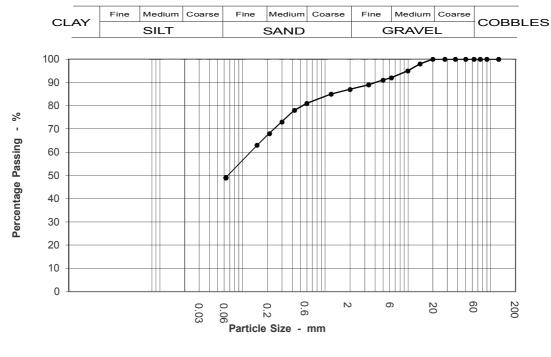
Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	90		
14	88		
10	85		
6.3	83		
5	81		
3.35	79		
2	76		
1.18	73		
0.6	67		
0.425	63		
0.3	56		
0.212	47		
0.15	37		
0.063	22		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	24.0	
Sand	54.0	
Silt & Clay	22.0	

Grading Analysis		
D60 D10	0.37	
Uniformity Coefficient	N/A	

1489


Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

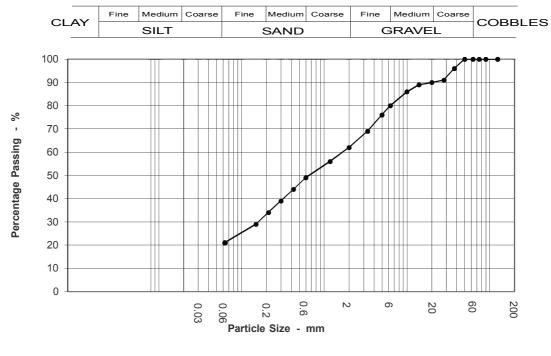
BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8808
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	11
Sample	Light pinkish brown slightly gravelly silty sandy CLAY	Depth (m):	4.70 - 5.50
Description:		Date Tested:	28/11/2013

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	10 Fassing	mm	70 Fassing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	95		
6.3	92		
5	91		
3.35	89		
2	87		
1.18	85		
0.6	81		
0.425	78		
0.3	73		
0.212	68		
0.15	63		
0.063	49		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	13.0		
Sand	38.0		
Silt & Clay	49.0		

Grading Analysis			
D60 D10	0.13		
Uniformity Coefficient	N/A		



Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8807
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	9
Sample	Brown silty SAND and GRAVEL	Depth (m):	4.00 - 4.50
Description:		Date Tested:	27/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	91		
20	90		
14	89		
10	86		
6.3	80		
5	76		
3.35	69		
2	62		
1.18	56		
0.6	49		
0.425	44		
0.3	39		
0.212	34		
0.15	29		
0.063	21		

Agata K-Roche

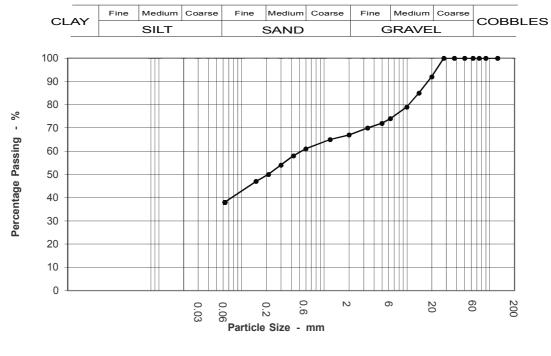
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	38.0		
Sand	41.0		
Silt & Clay	21.0		

Grading Analysis			
D60 D10	1.73		
Uniformity Coefficient	N/A		


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8809
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Pinkish brown clayey SAND and GRAVEL	Depth (m):	5.50 - 6.00
Description:		Date Tested:	26/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	92		
14	85		
10	79		
6.3	74		
5	72		
3.35	70		
2	67		
1.18	65		
0.6	61		
0.425	58		
0.3	54		
0.212	50		
0.15	47		
0.063	38		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	33.0		
Sand	29.0		
Silt & Clay	38.0		

Grading Analysis			
D60 D10	0.54		
Uniformity Coefficient	N/A		

Date:

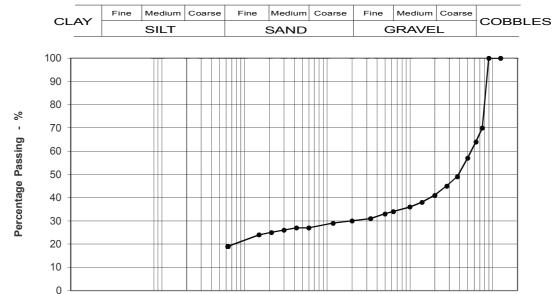
09/12/2013

Checked and

d Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1


Remarks:

Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8810
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	16
Sample	Brown sandy clayey GRAVEL with frequent cobbles	Depth (m):	6.75 - 7.50
Description:		Date Tested:	28/11/2013

0.03

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	70		
63	64		
50	57		
37.5	49		
28	45		
20	41		
14	38		
10	36		
6.3	34		
5	33		
3.35	31		
2	30		
1.18	29		
0.6	27		
0.425	27		
0.3	26		
0.212	25		
0.15	24		
0.063	19		

0 00 Particl	0 iN e Size -	0 0 • mm	N	თ	20	60	200
tion				Test M	ethod		
% Passing		BS 1377 : Part 2 : 1990			90		
/o Fassing			Sieving		Claus	e Depth	(m):
		Se	dimentati	on		N/A	

Sample Propo	ortions
Cobbles	36.0
Gravel	34.0
Sand	11.0
Silt & Clay	19.0

Grading Analysis			
D60 D10	55.57		
Uniformity Coefficient	N/A		

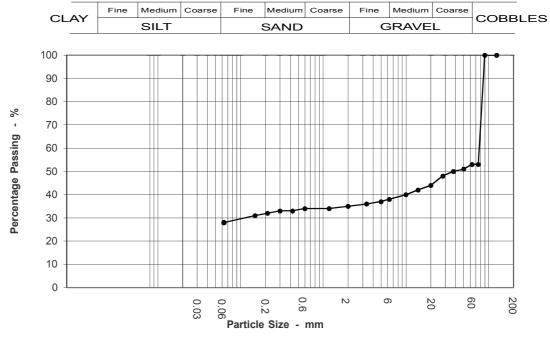
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8811	
Contract No:	5414	Hole ID:	BH13	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Sample	Pinkish brown alightly condy alightly grovally CLAX with 2	Sample No:	18	
-	Pinkish brown slightly sandy slightly gravelly CLAY with 2 intact SANDSTONE cores	Depth (m):	7.50 - 8.50	
Description:	Intact SANDSTONE COles	Date Tested:	29/11/2013	

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	53		
63	53		
50	51		
37.5	50		
28	48		
20	44		
14	42		
10	40		
6.3	38		
5	37		
3.35	36		
2	35		
1.18	34		
0.6	34		
0.425	33		
0.3	33		
0.212	32		
0.15	31		
0.063	28		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	47.0		
Gravel	18.0		
Sand	7.0		
Silt & Clay	28.0		

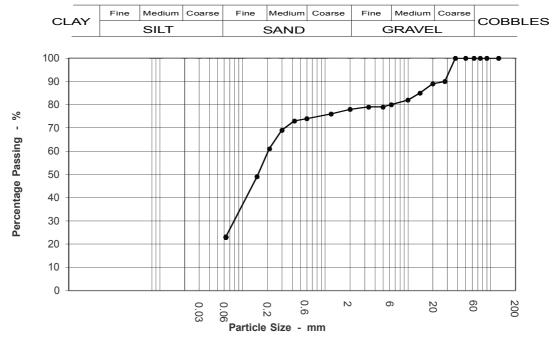
Grading Analysis		
D60 D10	77.23	
Uniformity Coefficient	N/A	

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8813
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	2
Sample	Brown gravelly silty SAND	Depth (m):	0.80 - 1.20
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
	100	111111	
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	90		
20	89		
14	85		
10	82		
6.3	80		
5	79		
3.35	79		
2	78		
1.18	76		
0.6	74		
0.425	73		
0.3	69		
0.212	61		
0.15	49		
0.063	23		

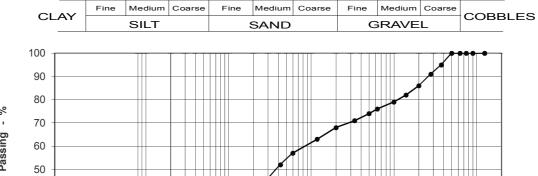
Agata K-Roche

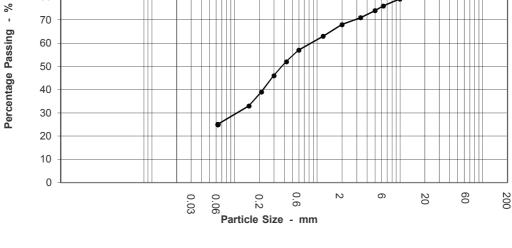
Senior Technician

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	22.0		
Sand	55.0		
Silt & Clay	23.0		

Grading Analysis		
D60 D10	0.21	
Uniformity Coefficient	N/A	


Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8814
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	6
Sample	Reddish brown gravelly sandy silty CLAY	Depth (m):	2.40 - 3.00
Description:		Date Tested:	26/11/2013

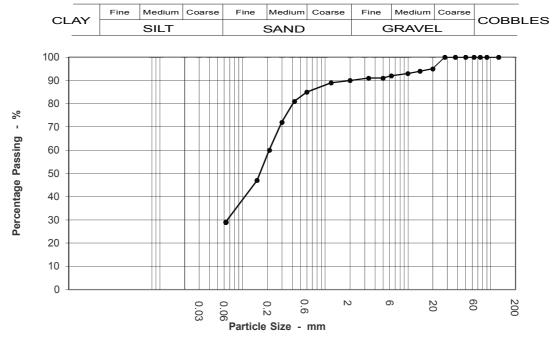
Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	91		
20	86		
14	82		
10	79		
6.3	76		
5	74		
3.35	71		
2	68		
1.18	63		
0.6	57		
0.425	52		
0.3	46		
0.212	39		
0.15	33		
0.063	25		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	32.0		
Sand	43.0		
Silt & Clay	25.0		

Grading Analysis		
D60 D10	0.89	
Uniformity Coefficient	N/A	

1489


Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8816
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	D
Somalo		Sample No:	10
Sample	Brown slightly gravelly very sandy silty CLAY	Depth (m):	3.50 - 3.75
Description:		Date Tested:	26/11/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	95		
14	94		
10	93		
6.3	92		
5	91		
3.35	91		
2	90		
1.18	89		
0.6	85		
0.425	81		
0.3	72		
0.212	60		
0.15	47		
0.063	29		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	10.0		
Sand	61.0		
Silt & Clay	29.0		

Grading Analysis		
D60 D10	0.21	
Uniformity Coefficient	N/A	

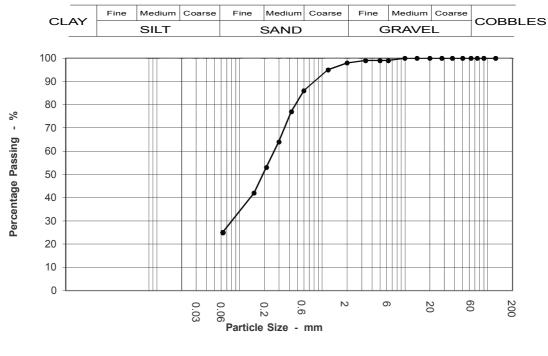
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8815
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	8
Sample	Brownish grey slightly gravelly clayey SAND	Depth (m):	3.00 - 3.40
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	95		
0.6	86		
0.425	77		
0.3	64		
0.212	53		
0.15	42		
0.063	25		

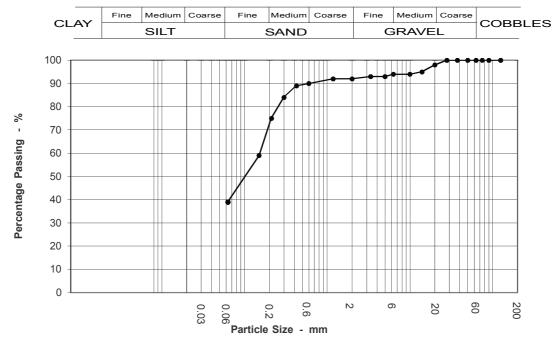
Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	2.0		
Sand	73.0		
Silt & Clay	25.0		

Grading Analysis		
D60 D10	0.27	
Uniformity Coefficient	N/A	

Date:

09/12/2013



Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8817
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	D
Sampla		Sample No:	12
Sample	Brown gravelly clayey SAND	Depth (m):	4.3
Description:		Date Tested:	26/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	95		
10	94		
6.3	94		
5	93		
3.35	93		
2	92		
1.18	92		
0.6	90		
0.425	89		
0.3	84		
0.212	75		
0.15	59		
0.063	39		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	8.0		
Sand	53.0		
Silt & Clay	39.0		

Grading Analysis		
D60 D10	0.15	
Uniformity Coefficient	N/A	

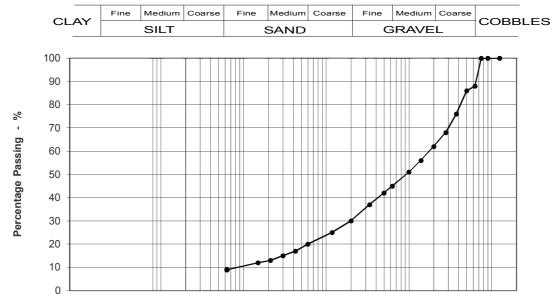
 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Date: 09/12/2013


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8820
Contract No:	5414	Hole ID:	BH15
Contract Name:	Stonehaven FAS	Sample Type:	В
Commis		Sample No:	5
Sample	Brown slightly clayey sandy GRAVEL with cobbles	Depth (m):	1.50 - 3.00
Description:		Date Tested:	05/12/2013

0.03

Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	88		
50	86		
37.5	76		
28	68		
20	62		
14	56		
10	51		
6.3	45		
5	42		
3.35	37		
2	30		
1.18	25		
0.6	20		
0.425	17		
0.3	15		
0.212	13		
0.15	12		
0.063	9		

0 06 Particl	0 12 e Size -	റ്റെ തെ mm	ა	თ	20	60	200
tion				Test Me	ethod		
% Passing			BS	1377 : Pa	art 2 : 199	90	
/o Fassing		5	Sieving		Claus	e Depth ((m):
		Sed	imentatio	on		N/A	

Sample Proportions			
Cobbles	12.0		
Gravel	58.0		
Sand	21.0		
Silt & Clay	9.0		

Grading Analysis		
D60	18.00	
D10	0.09	
Uniformity Coefficient	195.65	

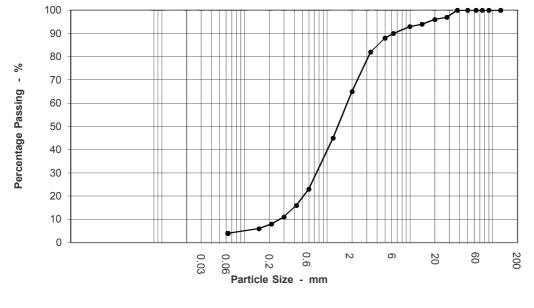
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8819
Contract No:	5414	Hole ID:	BH15
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	4
Sample	Brown very gravelly SAND	Depth (m):	1.20 - 1.50
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	96		
14	94		
10	93		
6.3	90		
5	88		
3.35	82		
2	65		
1.18	45		
0.6	23		
0.425	16		
0.3	11		
0.212	8		
0.15	6		
0.063	4		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	35.0	
Sand	61.0	
Silt & Clay	4.0	

Grading Analysis		
D60	1.80	
D10	0.27	
Uniformity Coefficient	6.63	

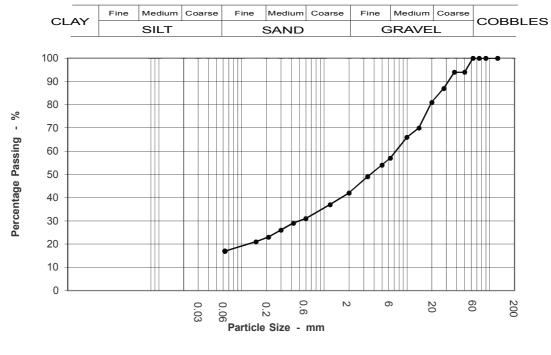
Date:

09/12/2013

Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8823
Contract No:	5414	Hole ID:	BH15
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	8
Sample	Orange brown slightly sandy gravelly silty CLAY	Depth (m):	3.00 - 3.30
Description:		Date Tested:	26/11/2013

	Sievir	ng	Sediment	tation
Particle	e Size	% Passing	Particle Size	% Passing
mn	n	70 T assing	mm	70 T assing
12	5	100		
90)	100		
75	5	100		
63	3	100		
50)	94		
37.	5	94		
28	3	87		
20)	81		
14	ł	70		
10)	66		
6.3	3	57		
5		54		
3.3	5	49		
2		42		
1.1	8	37		
0.6	6	31		
0.42	25	29		
0.3	3	26		
0.2	12	23		
0.1	5	21		
0.06	63	17		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	58.0	
Sand	25.0	
Silt & Clay	17.0	

Grading Analysis		
D60 D10	7.53	
Uniformity Coefficient	N/A	

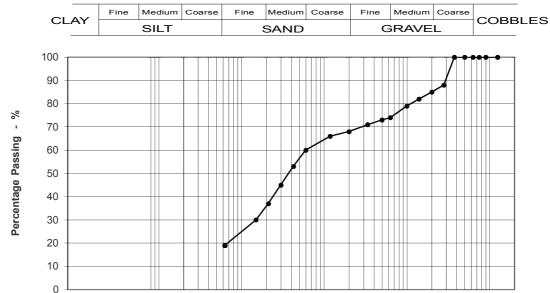
 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Date: 09/12/2013


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8824
Contract No:	5414	Hole ID:	BH15
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Brownish grey clayey very gravelly SAND	Depth (m):	4.50 - 5.00
Description:		Date Tested:	27/11/2013

0.03

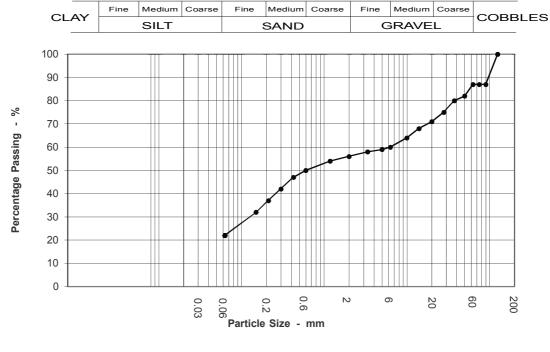
Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	88		
20	85		
14	82		
10	79		
6.3	74		
5	73		
3.35	71		
2	68		
1.18	66		
0.6	60		
0.425	53		
0.3	45		
0.212	37		
0.15	30		
0.063	19		

0 06 Particl	0 12 e Size -	റ്റെ തെ mm	ა	თ	20	60	200
tion				Test Me	ethod		
% Passing			BS	1377 : Pa	art 2 : 199	90	
/o Fassing		5	Sieving		Claus	e Depth ((m):
		Sed	imentatio	on		N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	32.0		
Sand	49.0		
Silt & Clay	19.0		

Grading Analysis		
D60 D10	0.60	
Uniformity Coefficient	N/A	

1489


Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

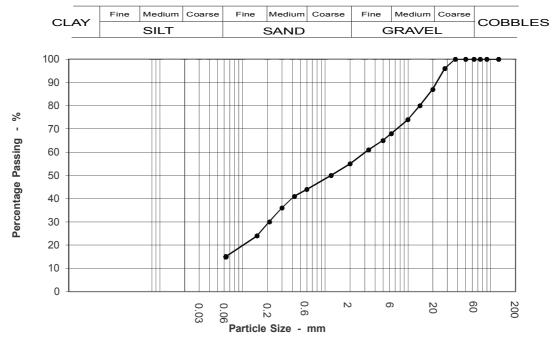
BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8825
Contract No:	5414	Hole ID:	BH17
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	3
Sample	Brown clayey very gravelly SAND with cobbles	Depth (m):	0.50 - 1.00
Description:		Date Tested:	29/11/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	87		
75	87		
63	87		
50	82		
37.5	80		
28	75		
20	71		
14	68		
10	64		
6.3	60		
5	59		
3.35	58		
2	56		
1.18	54		
0.6	50		
0.425	47		
0.3	42		
0.212	37		
0.15	32		
0.063	22		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	13.0		
Gravel	31.0		
Sand	34.0		
Silt & Clay	22.0		

Grading Analysis		
D60 D10	6.30	
Uniformity Coefficient	N/A	


1489

Checked and	Agata K-Roche	
Approved:	Senior Technician	

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8826
Contract No:	5414	Hole ID:	BH17
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	5
Sample	Brown clayey SAND and GRAVEL	Depth (m):	1.20 - 1.55
Description:		Date Tested:	27/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	96		
20	87		
14	80		
10	74		
6.3	68		
5	65		
3.35	61		
2	55		
1.18	50		
0.6	44		
0.425	41		
0.3	36		
0.212	30		
0.15	24		
0.063	15		

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

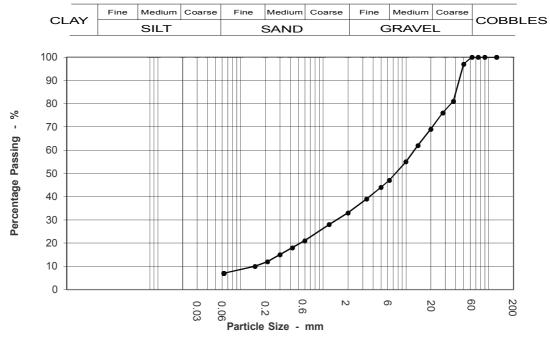
Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	45.0		
Sand	40.0		
Silt & Clay	15.0		

Grading Analysis		
D60 D10	3.13	
Uniformity Coefficient	N/A	

Sheet 1 of 1

Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8828
Contract No:	5414	Hole ID:	BH17
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	9
Sample	Brown slightly clayey very sandy GRAVEL	Depth (m):	2.00 - 2.50
Description:		Date Tested:	26/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	97		
37.5	81		
28	76		
20	69		
14	62		
10	55		
6.3	47		
5	44		
3.35	39		
2	33		
1.18	28		
0.6	21		
0.425	18		
0.3	15		
0.212	12		
0.15	10		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

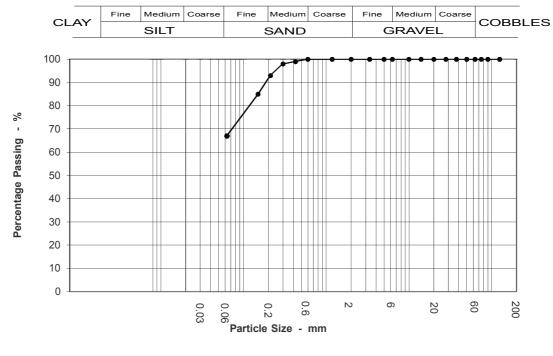
Sample Proportions			
Cobbles	0.0		
Gravel	67.0		
Sand	26.0		
Silt & Clay	7.0		

Grading Analysis		
D60	12.86	
D10	0.15	
Uniformity Coefficient	85.71	

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8829
Contract No:	5414	Hole ID:	BH17
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	13
Sample	Reddish brown sandy SILT	Depth (m):	4.00 - 5.00
Description:		Date Tested:	26/11/2013

Sieving		Sediment	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	100			
37.5	100			
28	100			
20	100			
14	100			
10	100			
6.3	100			
5	100			
3.35	100			
2	100			
1.18	100			
0.6	100			
0.425	99			
0.3	98			
0.212	93			
0.15	85			
0.063	67			

Agata K-Roche

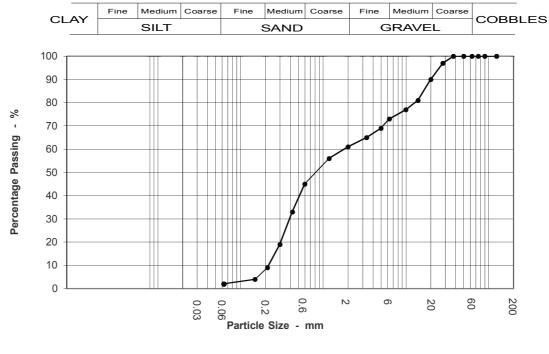
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	0.0		
Sand	33.0		
Silt & Clay	67.0		

Grading Analysis			
D60 D10			
Uniformity Coefficient	N/A		


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

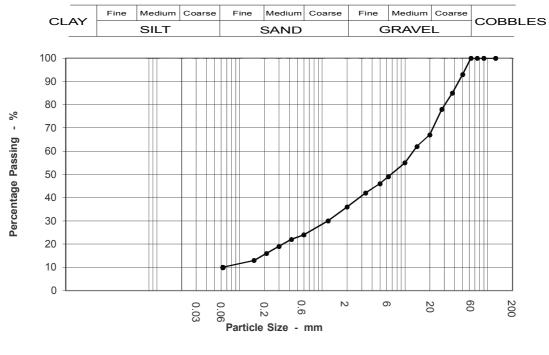
BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8830
Contract No:	5414	Hole ID:	BH18
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	3
Sample	Brown very gravelly SAND	Depth (m):	0.50 - 1.00
Description:		Date Tested:	26/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	90		
14	81		
10	77		
6.3	73		
5	69		
3.35	65		
2	61		
1.18	56		
0.6	45		
0.425	33		
0.3	19		
0.212	9		
0.15	4		
0.063	2		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	39.0		
Sand	59.0		
Silt & Clay	2.0		

Grading Analysis			
D60	1.84		
D10	0.22		
Uniformity Coefficient	8.32		


1489

Checked and	Agata K-Roche
Approved:	Senior Technician
Unit 10 Wessex Roa	d Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8831
Contract No:	5414	Hole ID:	BH18
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown slightly silty very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	28/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	85		
28	78		
20	67		
14	62		
10	55		
6.3	49		
5	46		
3.35	42		
2	36		
1.18	30		
0.6	24		
0.425	22		
0.3	19		
0.212	16		
0.15	13		
0.063	10		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	64.0	
Sand	26.0	
Silt & Clay	10.0	

Grading Analysis		
D60	12.86	
D10	0.06	
Uniformity Coefficient	204.08	

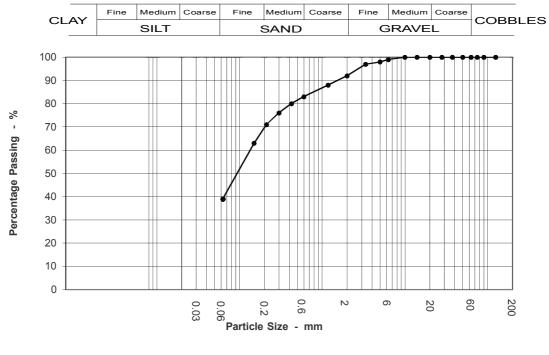
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8833
Contract No:	5414	Hole ID:	BH18
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Dark grey slightly gravelly sandy SILT	Depth (m):	2.00 - 3.00
Description:		Date Tested:	26/11/2013

Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	98		
3.35	97		
2	92		
1.18	88		
0.6	83		
0.425	80		
0.3	76		
0.212	71		
0.15	63		
0.063	39		

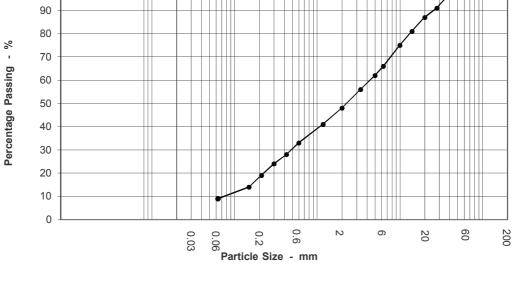
Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	8.0	
Sand	53.0	
Silt & Clay	39.0	

Grading Analysis		
D60 D10	0.14	
Uniformity Coefficient	N/A	

Remarks:

Checked and Approved:


Agat K-Roche Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8834
Contract No:	5414	Hole ID:	BH18
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	10
Sample	Dark greyish brown slightly clayey very sandy GRAVEL	Depth (m):	3.30 - 4.00
Description:		Date Tested:	26/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	91		
20	87		
14	81		
10	75		
6.3	66		
5	62		
3.35	56		
2	48		
1.18	41		
0.6	33		
0.425	28		
0.3	24		
0.212	19		
0.15	14		
0.063	9		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

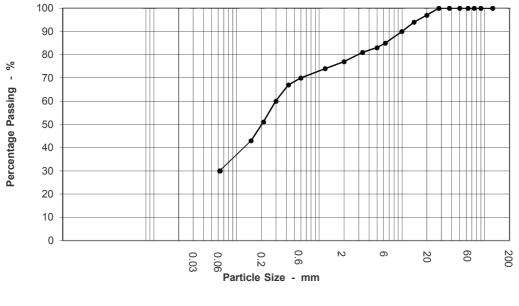
Sample Proportions			
Cobbles	0.0		
Gravel	52.0		
Sand	39.0		
Silt & Clay	9.0		

Grading Analysis		
D60	4,45	
D10	0.08	
Uniformity Coefficient	55.35	

Date:

09/12/2013

Remarks:


Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

90 Clause 9.2		
Aberdeenshire Council	Lab Sample No:	S8835
5414	Hole ID:	BH18
Stonehaven FAS	Sample Type:	В
	Sample No:	13
Orange brown sandy gravelly silty CLAY	Depth (m):	4.50 - 5.00
	Date Tested:	26/11/2013
	Aberdeenshire Council 5414 Stonehaven FAS	Aberdeenshire CouncilLab Sample No:5414Hole ID:Stonehaven FASSample Type:Orange brown sandy gravelly silty CLAYDepth (m):

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	94		
10	90		
6.3	85		
5	83		
3.35	81		
2	77		
1.18	74		
0.6	70		
0.425	67		
0.3	60		
0.212	51		
0.15	43		
0.063	30		

Agata K-Roche

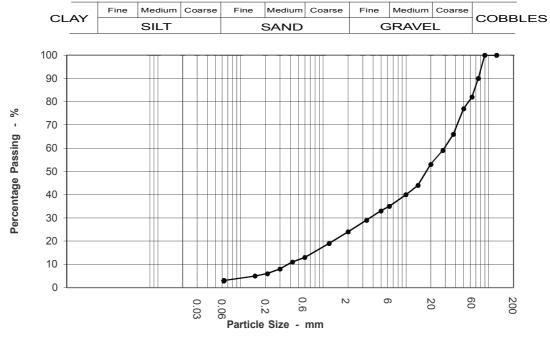
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	23.0		
Sand	47.0		
Silt & Clay	30.0		

Grading Analysis		
D60 D10	0.30	
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8836
Contract No:	5414	Hole ID:	BH19
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	3
Sample	Brown very sandy GRAVEL with cobbles	Depth (m):	0.80 - 1.20
Description:		Date Tested:	29/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	90		
63	82		
50	77		
37.5	66		
28	59		
20	53		
14	44		
10	40		
6.3	35		
5	33		
3.35	29		
2	24		
1.18	19		
0.6	13		
0.425	11		
0.3	8		
0.212	6		
0.15	5		
0.063	3		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	18.0		
Gravel	58.0		
Sand	21.0		
Silt & Clay	3.0		

Grading Analysis		
D60	29.36	
D10	0.38	
Uniformity Coefficient	76.58	

Date:

09/12/2013

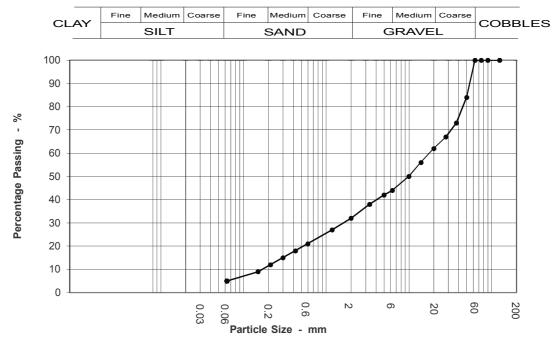
1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8837
Contract No:	5414	Hole ID:	BH19
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample Description:	Brown very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	29/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
	100		
125			
90	100		
75	100		
63	100		
50	84		
37.5	73		
28	67		
20	62		
14	56		
10	50		
6.3	44		
5	42		
3.35	38		
2	32		
1.18	27		
0.6	21		
0.425	18		
0.3	15		
0.212	12		
0.15	9		
0.063	5		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions			
Cobbles	0.0		
Gravel	68.0		
Sand	27.0		
Silt & Clay	5.0		

Grading Analysis		
D60	18.00	
D10	0.17	
Uniformity Coefficient	105.47	

Date:

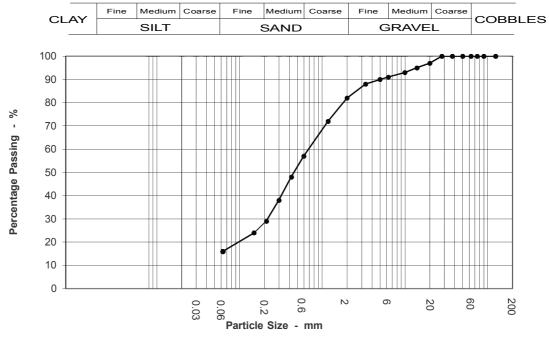
09/12/2013

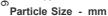
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche


Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8840
Contract No:	5414	Hole ID:	BH19
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	11
Sample	Grey clayey gravelly SAND	Depth (m):	3.00 - 4.00
Description:		Date Tested:	02/12/2013

Sievi	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	95		
10	93		
6.3	91		
5	90		
3.35	88		
2	82		
1.18	72		
0.6	57		
0.425	48		
0.3	38		
0.212	29		
0.15	24		
0.063	16		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	18.0	
Sand	66.0	
Silt & Clay	16.0	

Grading Analysis		
D60 D10	0.72	
Uniformity Coefficient	N/A	

1489

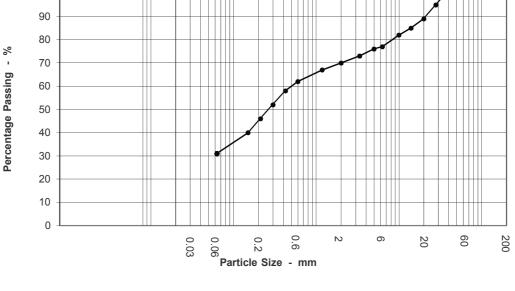
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician

Date: 09/12/2013

Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshire Council	Lab Sample No:	S8842
Contract No:	5414	Hole ID:	BH19
Contract Name:	Stonehaven FAS	Sample Type:	В
Commis		Sample No:	14
Sample	Reddish brown gravelly sandy CLAY	Depth (m):	4.80 - 5.00
Description:		Date Tested:	29/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	89		
14	85		
10	82		
6.3	77		
5	76		
3.35	73		
2	70		
1.18	67		
0.6	62		
0.425	58		
0.3	52		
0.212	46		
0.15	40		
0.063	31		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	30.0	
Sand	39.0	
Silt & Clay	31.0	

Grading Ana	lysis
D60 D10	0.51
Uniformity Coefficient	N/A

Date:

09/12/2013

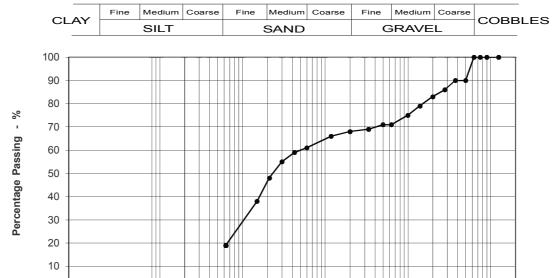
Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used

Sheet 1 of 1


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8843
Contract No:	5414	Hole ID:	BH20
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	4
Sample	Brown clayey very gravelly SAND	Depth (m):	0.90 - 1.20
Description:		Date Tested:	27/11/2013

0.00 N.N.00 Particle Size - mm

0.03

N

ი

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	90		
37.5	90		
28	86		
20	83		
14	79		
10	75		
6.3	71		
5	71		
3.35	69		
2	68		
1.18	66		
0.6	61		
0.425	59		
0.3	55		
0.212	48		
0.15	38		
0.063	19		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	32.0	
Sand	49.0	
Silt & Clay	19.0	

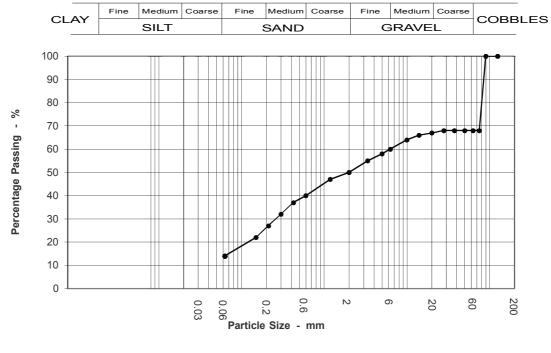
Grading Ana	alysis
D60 D10	0.51
Uniformity Coefficient	N/A

Date:

Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

0


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8844	
Contract No:	5414	Hole ID:	BH20	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	10	
Sample	Brown silty gravelly SAND with frequent cobbles	Depth (m):	2.00 - 3.00	
Description:		Date Tested:	29/11/2013	

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	68		
63	68		
50	68		
37.5	68		
28	68		
20	67		
14	66		
10	64		
6.3	60		
5	58		
3.35	55		
2	50		
1.18	47		
0.6	40		
0.425	37		
0.3	32		
0.212	27		
0.15	22		
0.063	14		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions				
Cobbles	32.0			
Gravel	18.0			
Sand	36.0			
Silt & Clay	14.0			

Grading Analysis		
D60 D10	6.30	
Uniformity Coefficient	N/A	

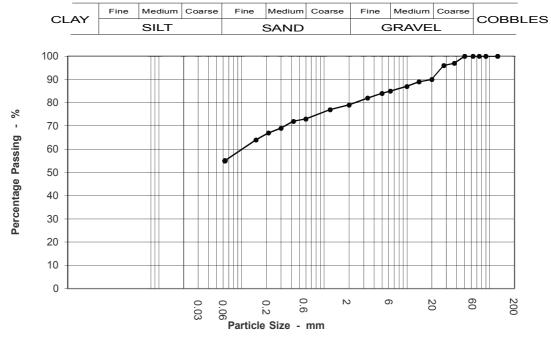
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used


Sheet 1 of 1

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8846
Contract No:	5414	Hole ID:	BH20
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	14
Sample	Reddish brown slightly gravelly slightly sandy silty CLAY	Depth (m):	3.60 - 4.00
Description:		Date Tested:	29/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	97		
28	96		
20	90		
14	89		
10	87		
6.3	85		
5	84		
3.35	82		
2	79		
1.18	77		
0.6	73		
0.425	72		
0.3	69		
0.212	67		
0.15	64		
0.063	55		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	21.0		
Sand	24.0		
Silt & Clay	55.0		

Grading Analysis			
D60 D10	0.11		
Uniformity Coefficient	N/A		

Date:

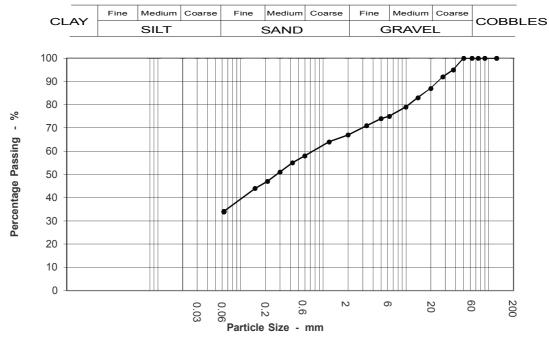
09/12/2013

1489

Senior Technician Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

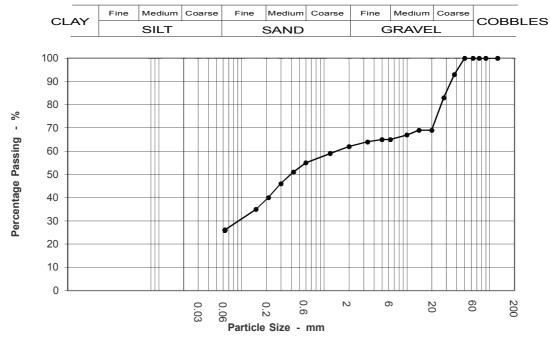
BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8848	
Contract No:	5414	Hole ID:	BH20	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	17	
Sample	Reddish brown slightly sandy slightly gravelly CLAY	Depth (m):	4.50 - 5.00	
Description:		Date Tested:	26/11/2013	

Sievir	Sieving		ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	92		
20	87		
14	83		
10	79		
6.3	75		
5	74		
3.35	71		
2	67		
1.18	64		
0.6	58		
0.425	55		
0.3	51		
0.212	47		
0.15	44		
0.063	34		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions	
Cobbles	0.0
Gravel	33.0
Sand	33.0
Silt & Clay	34.0

Grading Analysis	
D60 D10	0.79
Uniformity Coefficient	N/A



Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8850
Contract No:	5414	Hole ID:	BH20
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	23
Sample	Pinkish brown very clayey very sandy GRAVEL	Depth (m):	6.20 - 6.75
Description:		Date Tested:	02/12/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	93		
28	83		
20	69		
14	69		
10	67		
6.3	65		
5	65		
3.35	64		
2	62		
1.18	59		
0.6	55		
0.425	51		
0.3	46		
0.212	40		
0.15	35		
0.063	26		

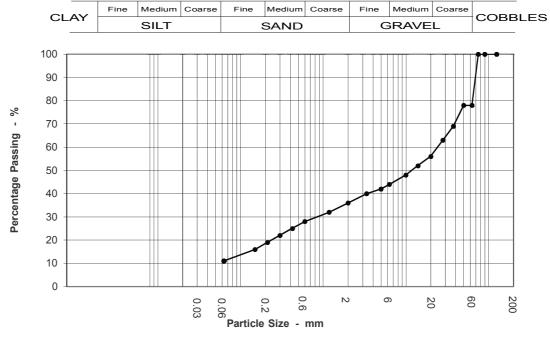
Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions	
Cobbles	0.0
Gravel	38.0
Sand	36.0
Silt & Clay	26.0

Grading Analysis	
D60 D10	1.45
Uniformity Coefficient	N/A

Date:

09/12/2013


Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8854
Contract No:	5414	Hole ID:	BH21B
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	6
Sample	Brown clayey very sandy GRAVEL with frequent cobbles	Depth (m):	1.80 - 2.00
Description:		Date Tested:	27/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	78		
50	78		
37.5	69		
28	63		
20	56		
14	52		
10	48		
6.3	44		
5	42		
3.35	40		
2	36		
1.18	32		
0.6	28		
0.425	25		
0.3	22		
0.212	19		
0.15	16		
0.063	11		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	22.0	
Gravel	42.0	
Sand	25.0	
Silt & Clay	11.0	

Grading Analysis		
D60 D10	24.57	
Uniformity Coefficient	N/A	

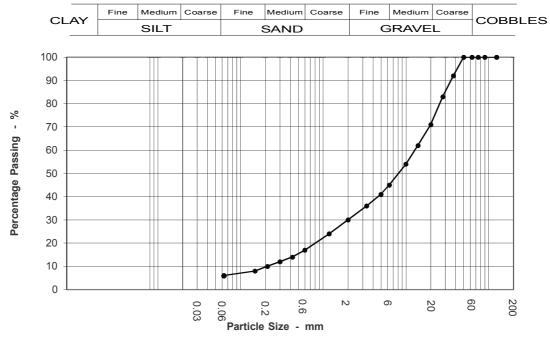
Date:

09/12/2013

Remarks:

Checked and Approved:

Agata K-Roche Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8855
Contract No:	5414	Hole ID:	BH21B
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	8
Sample	Brown slightly calyey very sandy GRAVEL	Depth (m):	2.00 - 3.00
Description:		Date Tested:	26/11/2013

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm		mm	
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	92		
28	83		
20	71		
14	62		
10	54		
6.3	45		
5	41		
3.35	36		
2	30		
1.18	24		
0.6	17		
0.425	14		
0.3	12		
0.212	10		
0.15	8		
0.063	6		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation N/A	

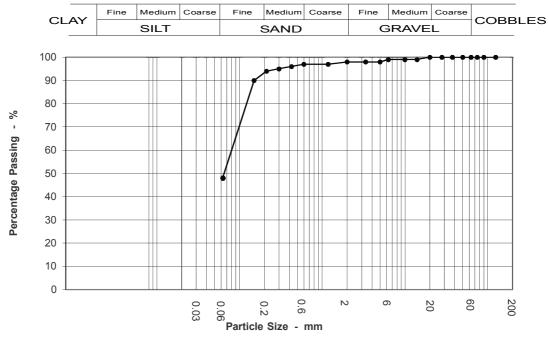
Sample Proportions		
Cobbles	0.0	
Gravel	70.0	
Sand	24.0	
Silt & Clay	6.0	

Grading Analysis		
D60	13.00	
D10	0.21	
Uniformity Coefficient	61.32	

Date:

09/12/2013

Remarks:


Checked and	Agata K-Roche	
Approved:	Senior Technician	
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT		

Sheet 1 of 1

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

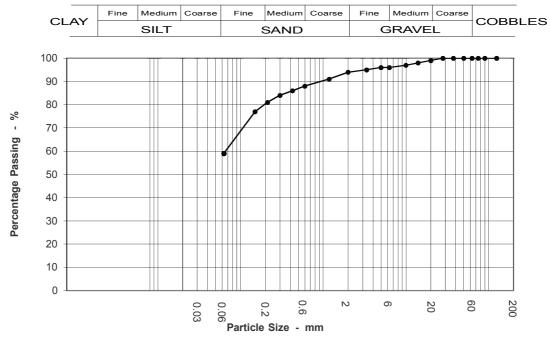
BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8857
Contract No:	5414	Hole ID:	BH21B
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	11
Sample Description:	Brown slightly gravelly very silty SAND	Depth (m):	3.30 - 4.00
Description:		Date Tested:	26/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	99		
5	98		
3.35	98		
2	98		
1.18	97		
0.6	97		
0.425	96		
0.3	95		
0.212	94		
0.15	90		
0.063	48		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	2.0		
Sand	50.0		
Silt & Clay	48.0		

Grading Analysis		
D60 D10	0.09	
Uniformity Coefficient	N/A	


Remarks:

Checked and	Agata K-Roche	
Approved:	Senior Technician	
Unit 10 Wessex Road	d Bourne end Buckinghamshire SL8 5DT	

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8858
Contract No:	5414	Hole ID:	BH21B
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Reddish brown slightly gravelly sandy silty CLAY	Depth (m):	4.00 - 4.40
Description:		Date Tested:	27/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	99		
14	98		
10	97		
6.3	96		
5	96		
3.35	95		
2	94		
1.18	91		
0.6	88		
0.425	86		
0.3	84		
0.212	81		
0.15	77		
0.063	59		

Agata K-Roche

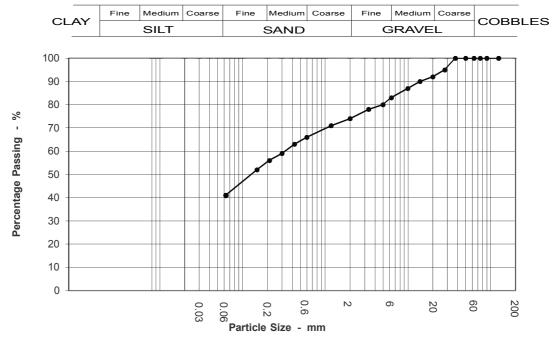
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	6.0		
Sand	35.0		
Silt & Clay	59.0		

Grading Analysis		
D60 D10	0.07	
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8859	
Contract No:	5414	Hole ID:	BH21B	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	15	
Sample	Reddish brown slightly gravelly slightly sandy CLAY	Depth (m):	4.50 - 5.00	
Description:		Date Tested:	02/12/2013	

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T dooling	mm	/or assing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	92		
14	90		
10	87		
6.3	83		
5	80		
3.35	78		
2	74		
1.18	71		
0.6	66		
0.425	63		
0.3	59		
0.212	56		
0.15	52		
0.063	41		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	26.0		
Sand	33.0		
Silt & Clay	41.0		

Grading Analysis		
D60 D10	0.33	
Uniformity Coefficient	N/A	

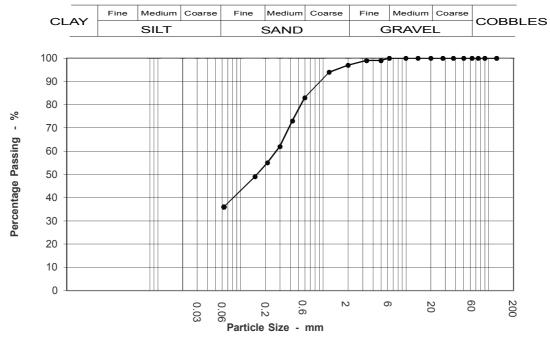
Date:

09/12/2013

Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8861	
Contract No:	5414	Hole ID:	BH21B	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	20	
Sample	Light brown slightly gravelly very silty SAND	Depth (m):	6.35 - 7.50	
Description:		Date Tested:	29/11/2013	

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	99		
3.35	99		
2	97		
1.18	94		
0.6	83		
0.425	73		
0.3	62		
0.212	55		
0.15	49		
0.063	36		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	3.0		
Sand	61.0		
Silt & Clay	36.0		

Grading Analysis			
D60 D10	0.27		
Uniformity Coefficient	N/A		

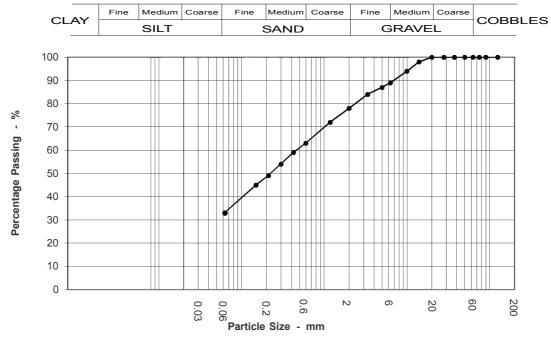
Date:

09/12/2013

Approved:	Senior Technician
Unit 10 Wessex Road	Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8862	
Contract No:	5414	Hole ID:	BH21B	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	23	
Sample	Light brown slightly gravelly very silty SAND	Depth (m):	8.00 - 9.00	
Description:		Date Tested:	27/11/2013	

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	10 Fassing	mm	70 Fassing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	98		
10	94		
6.3	89		
5	87		
3.35	84		
2	78		
1.18	72		
0.6	63		
0.425	59		
0.3	54		
0.212	49		
0.15	45		
0.063	33		

Agata K-Roche

Senior Technician

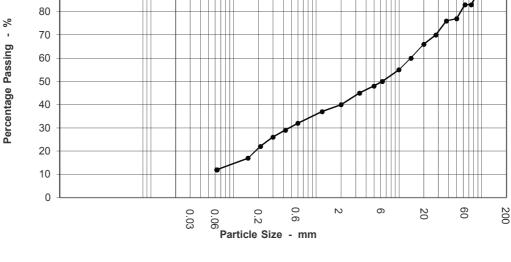
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	22.0	
Sand	45.0	
Silt & Clay	33.0	

Grading Analysis		
D60 D10	0.47	
Uniformity Coefficient	N/A	

Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8863
Contract No:	5414	Hole ID:	BH22
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	3
Sample	Brown clayey very sandy GRAVEL with cobbles	Depth (m):	0.80 - 1.20
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	88		
75	83		
63	83		
50	77		
37.5	76		
28	70		
20	66		
14	60		
10	55		
6.3	50		
5	48		
3.35	45		
2	40		
1.18	37		
0.6	32		
0.425	29		
0.3	26		
0.212	22		
0.15	17		
0.063	12		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	17.0	
Gravel	43.0	
Sand	28.0	
Silt & Clay	12.0	

Grading Analysis		
D60 D10	14.00	
Uniformity Coefficient	N/A	

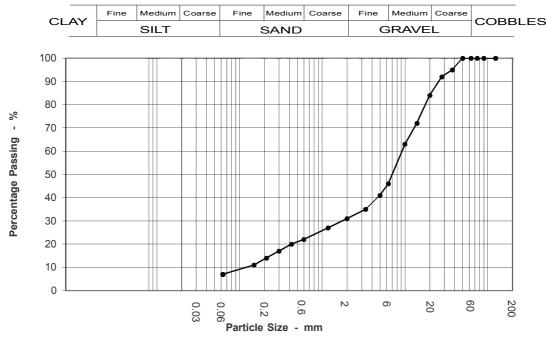
Date:

09/12/2013

Checked and Approved:

Remarks:

 Approved:
 Senior Technician


 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8864
Contract No:	5414	Hole ID:	BH22
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Brown slightly silty very sandy GRAVEL	Depth (m):	2.20 - 2.80
Description:		Date Tested:	28/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	95		
28	92		
20	84		
14	72		
10	63		
6.3	46		
5	41		
3.35	35		
2	31		
1.18	27		
0.6	22		
0.425	20		
0.3	17		
0.212	14		
0.15	11		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	69.0		
Sand	24.0		
Silt & Clay	7.0		

Grading Analysis		
D60	9.35	
D10	0.13	
Uniformity Coefficient	72.88	

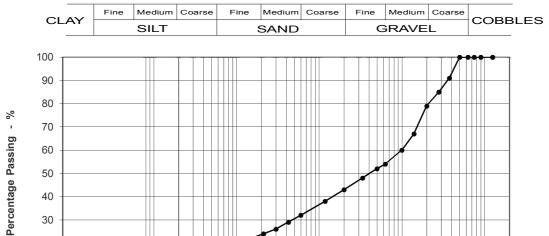
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8865	
Contract No:	5414	Hole ID:	BH22	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	10	
Sample	Reddish brown clayey very sandy GRAVEL	Depth (m):	3.00 - 3.40	
Description:		Date Tested:	02/12/2013	

Sieving Sedimentation Particle Size % Passing Particle Size % Passing 125 100 mm % Passing 125 100 mm % Passing 90 100 mm % Passing 125 100 mm % Passing 125 100 mm % 90 100 100 100 75 100 100 100 50 100 100 100 37.5 91 10 60 6.3 54 10 60 6.3 54 10 60 6.3 54 10 60 1.18 38 1.18 38 0.6 32 0.425 29 0.3 26 1 1	10				
Sieving Sedimentation Particle Size % Passing 125 100 90 100 75 100 63 100 50 100 37.5 91 28 85 20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	0				
Particle Size mm % Passing Particle Size mm % Passing 125 100 % <			0.03	O O Particl	
mm % Passing 125 100 90 100 75 100 63 100 50 100 37.5 91 28 85 20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	Sievir	ng	Sediment	tation	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		% Passing		% Passing	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	125	100			
50 100 37.5 91 28 85 20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	75	100			
37.5 91 28 85 20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	63	100			
28 85 20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	50	100			
20 79 14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29		91			
14 67 10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	28	85			
10 60 6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29		_			
6.3 54 5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29		-			
5 52 3.35 48 2 43 1.18 38 0.6 32 0.425 29	10	60			
3.35 48 2 43 1.18 38 0.6 32 0.425 29					
2 43 1.18 38 0.6 32 0.425 29	-				
1.18 38 0.6 32 0.425 29		-			
0.6 32 0.425 29		-			
0.425 29	-				
0.0 20	0.3	26			
0.212 24					
0.15 22	0.15				
0.063 17	0.063	17			U

30 20

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

200

60

N

ი

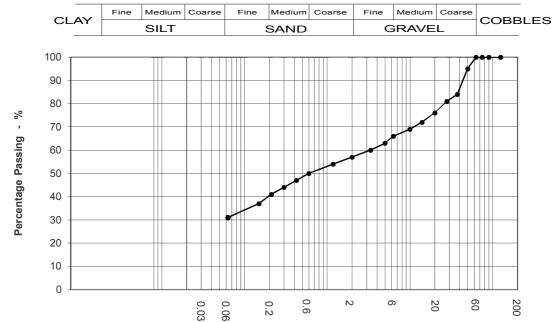
Sample Proportions			
Cobbles	0.0		
Gravel	57.0		
Sand	26.0		
Silt & Clay	17.0		

Grading Analysis		
D60 D10	10.00	
Uniformity Coefficient	N/A	

1489

Agata K-Roche

Senior Technician


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8868	
Contract No:	5414	Hole ID:	BH22	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	19	
Sample	Reddish brown slightly sandy gravelly CLAY	Depth (m):	6.50 - 7.50	
Description:		Date Tested:	04/12/2013	

0		0.03	0	0 iN e Size	0. 6 - mm
Qiavia		C a dima a m		1	
Sievir	ng	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	100				
75	100				
63	100				
50	95				
37.5	84				
28	81				
20	76				
14	72				
10	69				
6.3	66				
5	63				
3.35	60				
2	57				
1.18	54				
0.6	50				
0.425	47				
0.3	44				
0.212	41				
0.15	37				
0.063	31				Uı

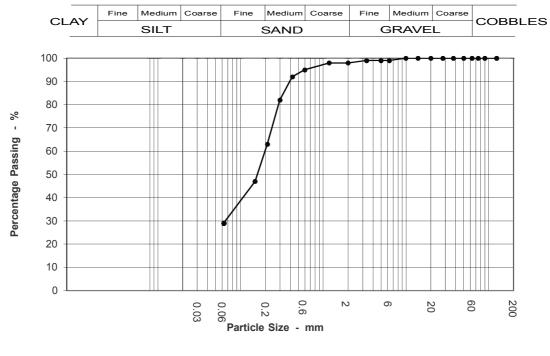
Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

Sample Proportions			
Cobbles	0.0		
Gravel	43.0		
Sand	26.0		
Silt & Clay	31.0		

Grading Analysis		
D60 D10	3.35	
Uniformity Coefficient	N/A	

1489


Remarks:

Checked and	Agata K-Roche	
Approved:	Senior Technician	
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT		

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8869
Contract No:	5414	Hole ID:	BH22
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	26
Sample	Light yellowish brown slightly gravelly very silty SAND	Depth (m):	9.30 - 10.00
Description:		Date Tested:	05/12/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	99		
2	98		
1.18	98		
0.6	95		
0.425	92		
0.3	82		
0.212	63		
0.15	47		
0.063	29		

Agata K-Roche

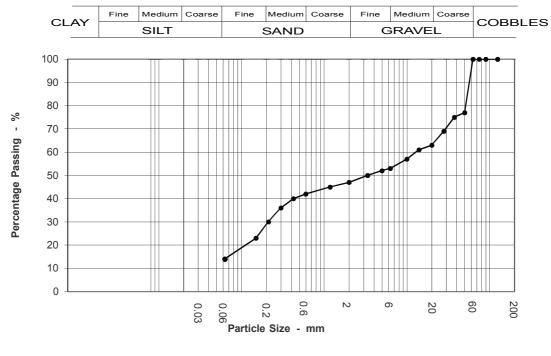
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	2.0		
Sand	69.0		
Silt & Clay	29.0		

Grading Analysis		
D60 D10	0.20	
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8870
Contract No:	5414	Hole ID:	BH23
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	3
Sample	Brown silty very sandy GRAVEL	Depth (m):	0.50 - 1.00
Description:		Date Tested:	02/12/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	77		
37.5	75		
28	69		
20	63		
14	61		
10	57		
6.3	53		
5	52		
3.35	50		
2	47		
1.18	45		
0.6	42		
0.425	40		
0.3	36		
0.212	30		
0.15	23		
0.063	14		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	53.0		
Sand	33.0		
Silt & Clay	14.0		

Grading Analysis		
D60 D10	13.00	
Uniformity Coefficient	N/A	

Date:

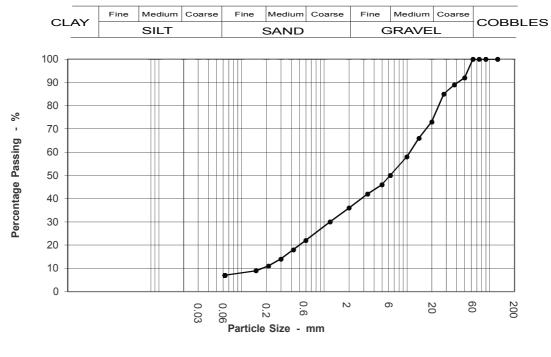
09/12/2013

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8871
Contract No:	5414	Hole ID:	BH23
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown silty very sandy GRAVEL	Depth (m):	1.20 - 2.40
Description:		Date Tested:	29/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
	100		
125	100		
90	100		
75	100		
63	100		
50	92		
37.5	89		
28	85		
20	73		
14	66		
10	58		
6.3	50		
5	46		
3.35	42		
2	36		
1.18	30		
0.6	22		
0.425	18		
0.3	14		
0.212	11		
0.15	9		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	64.0		
Sand	29.0		
Silt & Clay	7.0		

Grading Analysis		
D60	11.00	
D10	0.18	
Uniformity Coefficient	60.77	

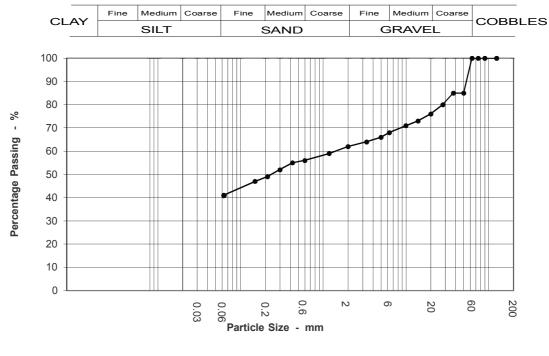
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8872	
Contract No:	5414	Hole ID:	BH23	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Sample		Sample No:	8	
-	Reddish brown slightly sandy gravelly silty CLAY	Depth (m):	2.50 - 3.00	
Description:		Date Tested:	04/12/2013	

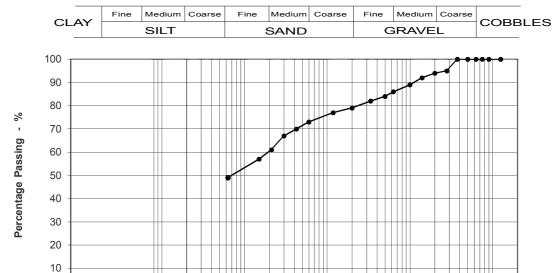
Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	85		
37.5	85		
28	80		
20	76		
14	73		
10	71		
6.3	68		
5	66		
3.35	64		
2	62		
1.18	59		
0.6	56		
0.425	55		
0.3	52		
0.212	49		
0.15	47		
0.063	41		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	38.0	
Sand	21.0	
Silt & Clay	41.0	

Grading Analysis		
D60 D10	1.45	
Uniformity Coefficient	N/A	

Remarks:


Checked and	Agata K-Roche
Approved:	Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8874	
Contract No:	5414	Hole ID:	BH23	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	12	
Sample	Reddish brown slightly garvelly slightly sandy silty CLAY	Depth (m):	3.50 - 3.75	
Description:		Date Tested:	04/12/2013	

0.06 Particle Size - mm

0.03

0.6

N

ი

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T 233119	mm	70 T 43311g
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	94		
14	92		
10	89		
6.3	86		
5	84		
3.35	82		
2	79		
1.18	77		
0.6	73		
0.425	70		
0.3	67		
0.212	61		
0.15	57		
0.063	49		

0

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	21.0	
Sand	30.0	
Silt & Clay	49.0	

Grading Analysis		
D60 D10	0.20	
Uniformity Coefficient	N/A	

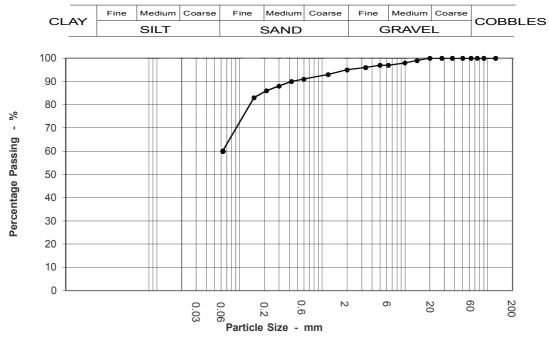
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8875
Contract No:	5414	Hole ID:	BH23
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	13
Sample	Reddish brown slightly gravelly sandy SILT	Depth (m):	3.75 - 4.00
Description:		Date Tested:	04/12/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assing	mm	70 T assing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	98		
6.3	97		
5	97		
3.35	96		
2	95		
1.18	93		
0.6	91		
0.425	90		
0.3	88		
0.212	86		
0.15	83		
0.063	60		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	5.0	
Sand	35.0	
Silt & Clay	60.0	

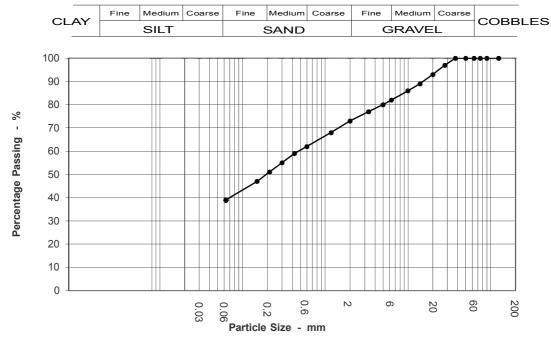
Grading Analysis		
D60 D10	0.06	
Uniformity Coefficient	N/A	

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8876
Contract No:	5414	Hole ID:	BH23
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	15
Sample	Reddish brown slightly sandy slightly gravelly CLAY	Depth (m):	4.00 - 5.00
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	97		
20	93		
14	89		
10	86		
6.3	82		
5	80		
3.35	77		
2	73		
1.18	68		
0.6	62		
0.425	59		
0.3	55		
0.212	51		
0.15	47		
0.063	39		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	27.0	
Sand	34.0	
Silt & Clay	39.0	

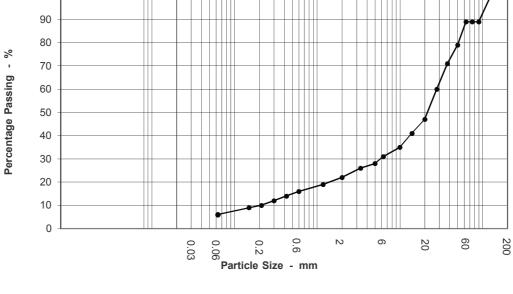
Grading Analysis	
D60 D10	0.48
Uniformity Coefficient	N/A

Date:

09/12/2013

Remarks:	
----------	--

Checked and	Agata K-Roche
Approved:	Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8877
Contract No:	5414	Hole ID:	BH24
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	3
Sample	Brown slightly clayey sandy GRAVEL with cobbles	Depth (m):	0.50 - 1.00
Description:		Date Tested:	28/11/2013

Sievir	ng	Sediment	ation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	89		
75	89		
63	89		
50	79		
37.5	71		
28	60		
20	47		
14	41		
10	35		
6.3	31		
5	28		
3.35	26		
2	22		
1.18	19		
0.6	16		
0.425	14		
0.3	12		
0.212	10		
0.15	9		
0.063	6		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	11.0	
Gravel	67.0	
Sand	16.0	
Silt & Clay	6.0	

Grading Analysis		
D60	28.00	
D10	0.21	
Uniformity Coefficient	132.08	

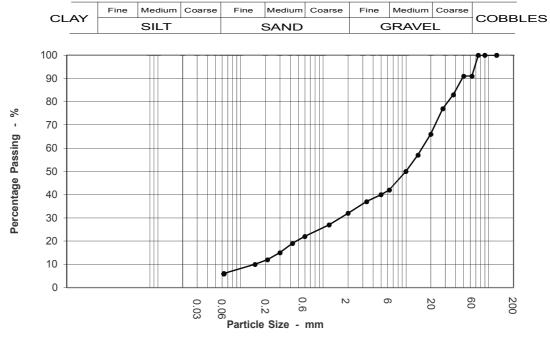
Date:

09/12/2013

Remarks: Whole sample used. 3.5 kg, 150mm diameter cobble recovered from test sample.

 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Agata K-Roche

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8878
Contract No:	5414	Hole ID:	BH24
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	6
Sample	Brown slightly clayey very sandy GRAVEL with cobbles	Depth (m):	1.20 - 1.70
Description:		Date Tested:	05/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	91		
50	91		
37.5	83		
28	77		
20	66		
14	57		
10	50		
6.3	42		
5	40		
3.35	37		
2	32		
1.18	27		
0.6	22		
0.425	19		
0.3	15		
0.212	12		
0.15	10		
0.063	6		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions		
Cobbles	9.0	
Gravel	59.0	
Sand	26.0	
Silt & Clay	6.0	

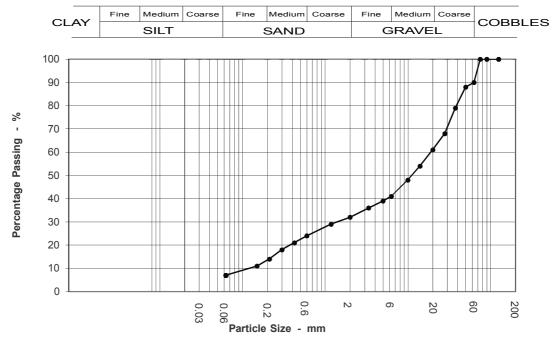
Grading Analysis		
D60	16.00	
D10	0.15	
Uniformity Coefficient	106.67	

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8879
Contract No:	5414	Hole ID:	BH24
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	9
Sample	Brown slightly silty very sandy GRAVEL with cobbles	Depth (m):	2.00 - 3.00
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	_	mm	,or accorng
125	100		
90	100		
75	100		
63	90		
50	88		
37.5	79		
28	68		
20	61		
14	54		
10	48		
6.3	41		
5	39		
3.35	36		
2	32		
1.18	29		
0.6	24		
0.425	21		
0.3	18		
0.212	14		
0.15	11		
0.063	7		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions		
Cobbles	10.0	
Gravel	58.0	
Sand	25.0	
Silt & Clay	7.0	

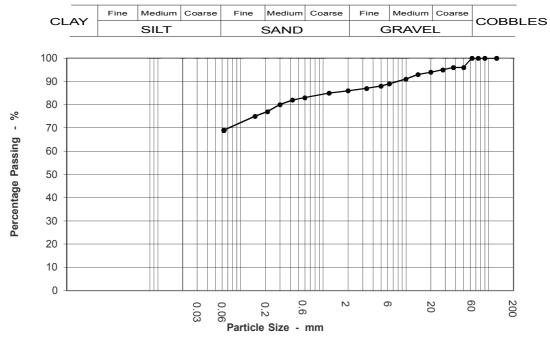
Grading Analysis		
D60	19.14	
D10	0.13	
Uniformity Coefficient	149.26	

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8880
Contract No:	5414	Hole ID:	BH24
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	11
Sample	Brown clayey slightly garvelly slightly sandy SILT	Depth (m):	3.20 - 4.00
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T 23311g	mm	70 T 43311g
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	96		
28	95		
20	94		
14	93		
10	91		
6.3	89		
5	88		
3.35	87		
2	86		
1.18	85		
0.6	83		
0.425	82		
0.3	80		
0.212	77		
0.15	75		
0.063	69		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	14.0	
Sand	17.0	
Silt & Clay	69.0	

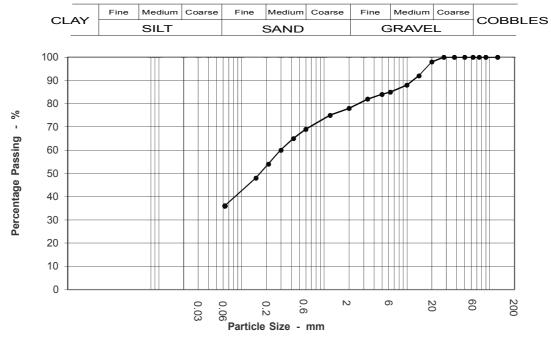
Grading Analysis		
D60 D10		
Uniformity Coefficient	N/A	

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8884
Contract No:	5414	Hole ID:	BH24
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	17
Sample	Reddish brown slightly gravelly sandy silty CLAY	Depth (m):	5.00 - 5.50
Description:		Date Tested:	05/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	98		
14	92		
10	88		
6.3	85		
5	84		
3.35	82		
2	78		
1.18	75		
0.6	69		
0.425	65		
0.3	60		
0.212	54		
0.15	48		
0.063	36		

Test Method				
BS 1377 : Part 2 : 1990				
Sieving	Clause Depth (m):			
Sedimentation	N/A			

Sample Proportions				
Cobbles	0.0			
Gravel	22.0			
Sand	42.0			
Silt & Clay	36.0			

Grading Analysis				
D60 D10	0.30			
Uniformity Coefficient	N/A			

Date:

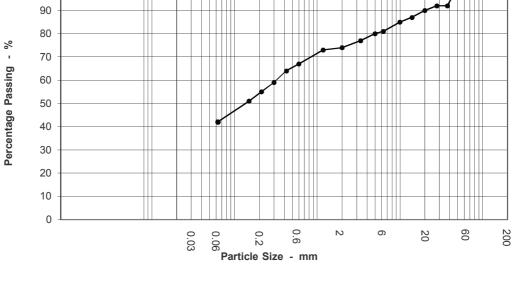
09/12/2013

1489

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

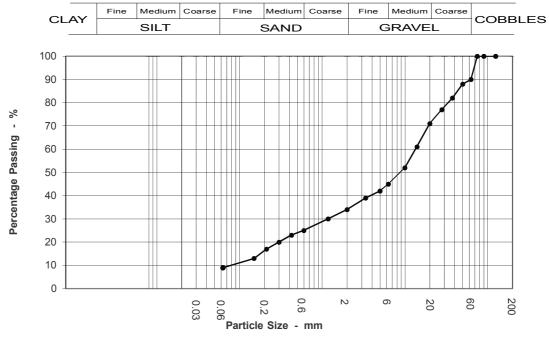
Client:	Aberdeenshire Council							Lab Sample No:			S8886
Contract No:	5414						Hole	D:		BH24	
Contract Name:	Stonehaven FAS					Sam	ple Ty	oe:	В		
Somalo						Sample No:		20			
Sample	Redish brown	ı slightl ^ı	y gravell	y slightl	y sandy	/ silty CL	AY	Dep	th (m):		6.00 - 6.75
Description:								Date	Teste	d:	02/12/2013
		Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	
	CLAY		SILT			SAND		G	RAVE	L	COBBLES
											·
	100										₽⋳⋪⊢●──┐

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	92		
28	92		
20	90		
14	87		
10	85		
6.3	81		
5	80		
3.35	77		
2	74		
1.18	73		
0.6	67		
0.425	64		
0.3	59		
0.212	55		
0.15	51		
0.063	42		

Test Method				
BS 1377 : Part 2 : 1990				
Sieving	Clause Depth (m):			
Sedimentation	N/A			

Sample Proportions				
Cobbles	0.0			
Gravel	26.0			
Sand	32.0			
Silt & Clay	42.0			

Grading Ana	lysis
D60 D10	0.33
Uniformity Coefficient	N/A



Checked and	Agata K-Roche			
Approved:	Senior Technician			
Unit 10 Wessex Roa	d Bourne end Buckinghamshire SL8 5DT			

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8887
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	3
Sample	Brown clayey very sandy GRAVEL with cobbles	Depth (m):	0.50 - 1.00
Description:		Date Tested:	02/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	90		
50	88		
37.5	82		
28	77		
20	71		
14	61		
10	52		
6.3	45		
5	42		
3.35	39		
2	34		
1.18	30		
0.6	25		
0.425	23		
0.3	20		
0.212	17		
0.15	13		
0.063	9		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	10.0	
Gravel	56.0	
Sand	25.0	
Silt & Clay	9.0	

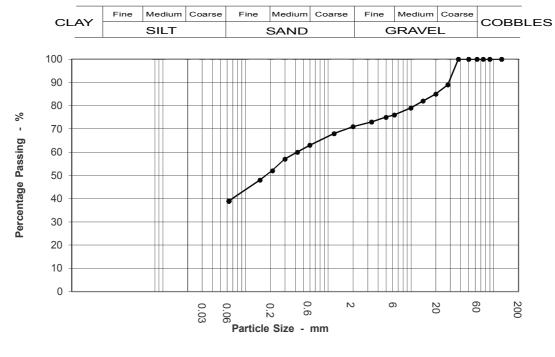
Grading Analysis		
D60	13.56	
D10	0.08	
Uniformity Coefficient	159.95	

1489

Approved:	Senior Technician
Unit 10 Wessex Road	Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Date: 09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8889
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	10
Sample	Reddish brown slightly sandy slightly gravelly silty CLAY	Depth (m):	2.60 - 3.00
Description:		Date Tested:	29/11/2013

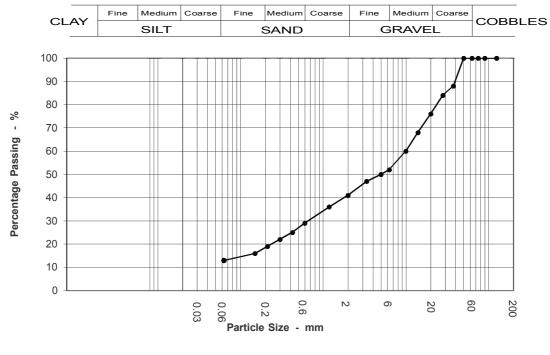
Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	89		
20	85		
14	82		
10	79		
6.3	76		
5	75		
3.35	73		
2	71		
1.18	68		
0.6	63		
0.425	60		
0.3	57		
0.212	52		
0.15	48		
0.063	39		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	29.0	
Sand	32.0	
Silt & Clay	39.0	

Grading Analysis	
D60 D10	0.43
Uniformity Coefficient	N/A

1489


Remarks:

Checked and	Agata K-Roche	
Approved:	Senior Technician	
Unit 10 Wessex Road	d Bourne end Buckinghamshire SL8 5DT	

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8888
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	D
Somalo		Sample No:	7
Sample	Brown clayey very sandy GRAVEL	Depth (m):	2.00 - 2.45
Description:		Date Tested:	02/12/2013

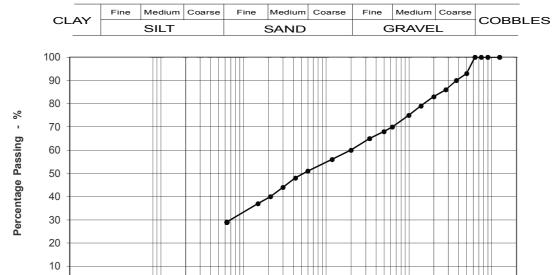
Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	88		
28	84		
20	76		
14	68		
10	60		
6.3	52		
5	50		
3.35	47		
2	41		
1.18	36		
0.6	29		
0.425	25		
0.3	22		
0.212	19		
0.15	16		
0.063	13		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	59.0		
Sand	28.0		
Silt & Clay	13.0		

Grading Analysis		
D60 D10	10.00	
Uniformity Coefficient	N/A	

Remarks:	Sample combined with B8 @ 2.0-2.5m
Checked and	Agata K-Roche


Checked andAgata K-RocheApproved:Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8891
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	В
Samala		Sample No:	17
Sample	Reddish brown slightly sandy gravelly CLAY	Depth (m):	4.60 - 5.00
Description:		Date Tested:	29/11/2013

0.00 N.N.00 Particle Size - mm

0.03

N

ი

Sieving		Sedimen	mentation	
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100			
90	100			
75	100			
63	100			
50	93			
37.5	90			
28	86			
20	83			
14	79			
10	75			
6.3	70			
5	68			
3.35	65			
2	60			
1.18	56			
0.6	51			
0.425	48			
0.3	44			
0.212	40			
0.15	37			
0.063	29			

0

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions			
Cobbles	0.0		
Gravel	40.0		
Sand	31.0		
Silt & Clay	29.0		

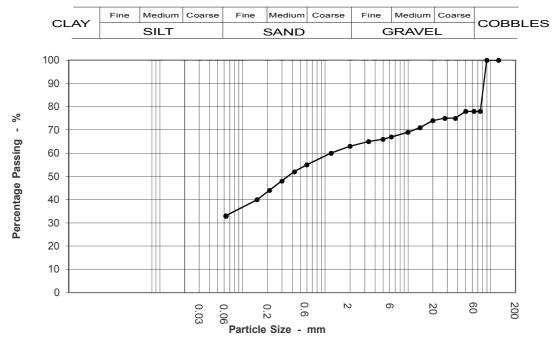
Grading Analysis		
D60 D10	2.00	
Uniformity Coefficient	N/A	

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2			
Client:	Aberdeenshire Council	Lab Sample No:	S8893
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Reddish brown gravelly very clayey SAND with frequent	Sample No:	22
-	cobbles	Depth (m):	6.00 - 6.50
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	78		
63	78		
50	78		
37.5	75		
28	75		
20	74		
14	71		
10	69		
6.3	67		
5	66		
3.35	65		
2	63		
1.18	60		
0.6	55		
0.425	52		
0.3	48		
0.212	44		
0.15	40		
0.063	33		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	22.0		
Gravel	15.0		
Sand	30.0		
Silt & Clay	33.0		

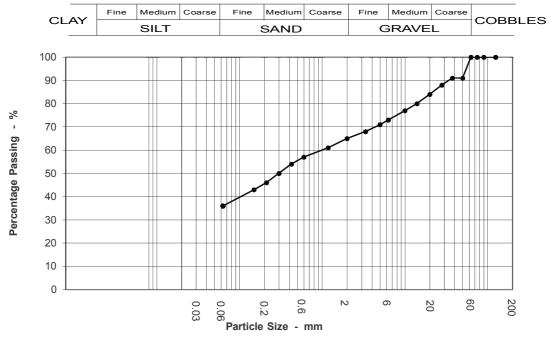
Grading Analysis		
D60 D10	1.18	
Uniformity Coefficient	N/A	

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8895
Contract No:	5414	Hole ID:	BH25
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample		Sample No:	29
	Reddish brown slightly sandy gravelly CLAY	Depth (m):	8.00 - 8.50
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assing	mm	70 T assing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	91		
28	88		
20	84		
14	80		
10	77		
6.3	73		
5	71		
3.35	68		
2	65		
1.18	61		
0.6	57		
0.425	54		
0.3	50		
0.212	46		
0.15	43		
0.063	36		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	35.0		
Sand	29.0		
Silt & Clay	36.0		

Grading Analysis		
D60 D10	1.04	
Uniformity Coefficient	N/A	

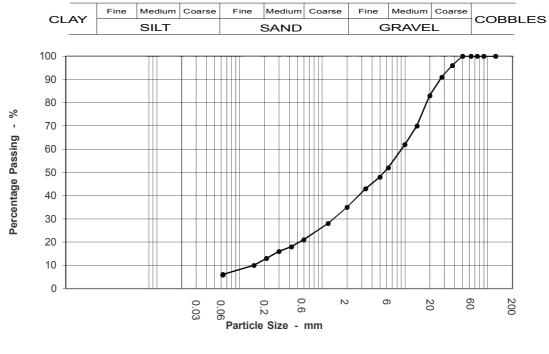
Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8896
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Commis		Sample No:	5
Sample	Brown very sandy GRAVEL	Depth (m):	0.80 - 1.20
Description:		Date Tested:	04/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	96		
28	91		
20	83		
14	70		
10	62		
6.3	52		
5	48		
3.35	43		
2	35		
1.18	28		
0.6	21		
0.425	18		
0.3	16		
0.212	13		
0.15	10		
0.063	6		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	65.0	
Sand	29.0	
Silt & Clay	6.0	

Grading Analysis		
D60	9.26	
D10	0.15	
Uniformity Coefficient	61.73	

Date:

09/12/2013

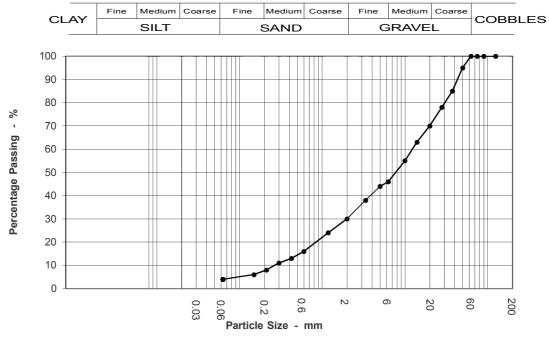
Approved:

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used


Remarks:

Checked and

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8897
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	7
Sample	Brown very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	02/12/2013

Sievir	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	85		
28	78		
20	70		
14	63		
10	55		
6.3	46		
5	44		
3.35	38		
2	30		
1.18	24		
0.6	16		
0.425	13		
0.3	11		
0.212	8		
0.15	6		
0.063	4		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	70.0	
Sand	26.0	
Silt & Clay	4.0	

Grading Analysis		
D60 D10	12.50 0.27	
Uniformity Coefficient	46.18	

Date:

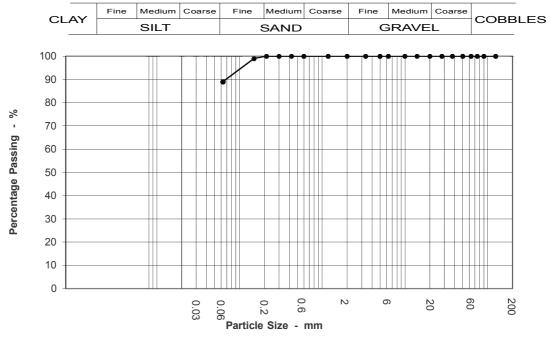
09/12/2013

Remarks:

Checked and Approved:

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Agata K-Roche

Whole sample used

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8899
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	11
Sample	Brown slightly sandy SILT	Depth (m):	2.30 - 3.00
Description:		Date Tested:	29/11/2013

Sievi	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	100		
0.6	100		
0.425	100		
0.3	100		
0.212	100		
0.15	99		
0.063	89		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving Clause Depth (m):	
Sedimentation N/A	

Sample Proportions		
• •		
Cobbles	0.0	
Gravel	0.0	
Sand	11.0	
Silt & Clay	89.0	

Grading Analysis		
D60		
D10		
Uniformity Coefficient	N/A	

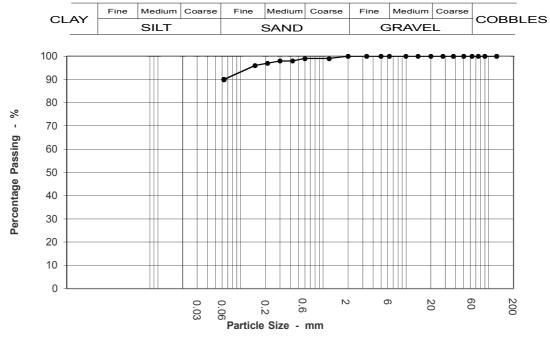
Date:

09/12/2013

1489

Remarks: Ch

Checked and	Agata K-Roche
Approved:	Senior Technician


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshire Council	Lab Sample No:	S8901
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	14
Sample	Reddish brown slightly sandy SILT	Depth (m):	3.00 - 4.00
Description:		Date Tested:	29/11/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	/or dooling	mm	70 T dooling
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	100		
2	100		
1.18	99		
0.6	99		
0.425	98		
0.3	98		
0.212	97		
0.15	96		
0.063	90		

Agata K-Roche

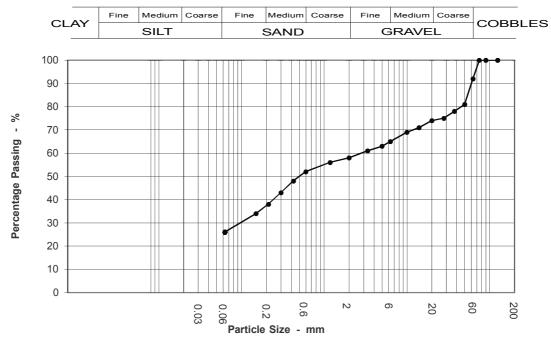
Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions		
Cobbles	0.0	
Gravel	0.0	
Sand	10.0	
Silt & Clay	90.0	

Grading Analysis		
D60 D10		
Uniformity Coefficient	N/A	


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8903
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla	Reddish brown slightly sandy slightly gravelly CLAY with	Sample No:	21
•	cobbles	Depth (m):	5.60 - 6.00
Description:	CODICS	Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	92		
50	81		
37.5	78		
28	75		
20	74		
14	71		
10	69		
6.3	65		
5	63		
3.35	61		
2	58		
1.18	56		
0.6	52		
0.425	48		
0.3	43		
0.212	38		
0.15	34		
0.063	26		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	8.0	
Gravel	34.0	
Sand	32.0	
Silt & Clay	26.0	

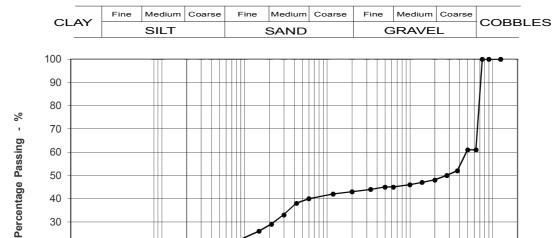
Grading Analysis		
D60 D10	2.90	
Uniformity Coefficient	N/A	

Approved: Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Remarks:

Checked and

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8905
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	24
Sample	Light brown gravelly very silty SAND with frequent cobbles	Depth (m):	7.00 - 7.50
Description:		Date Tested:	02/12/2013

N

ი

0		0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 22 e Size -	0.6 mm
			T artici	0 0120 -	
Sievir	ng	Sedimen	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100			1	9
90	100				
75	100				
63	61				
50	61				
37.5	52				-
28	50				
20	48				
14	47				
10	46				
6.3	45				
5	45				
3.35	44				
2	43				
1.18	42				6
0.6	40				
0.425	38				
0.3	33				
0.212	29				
0.15	26				
0.063	20				U

20 10 0

Test Method					
BS 1377 : Part 2 : 1990					
Sieving	Clause Depth (m):				
Sedimentation	N/A				

20

60

200

Sample Proportions				
Cobbles	39.0			
Gravel	18.0			
Sand	23.0			
Silt & Clay	20.0			

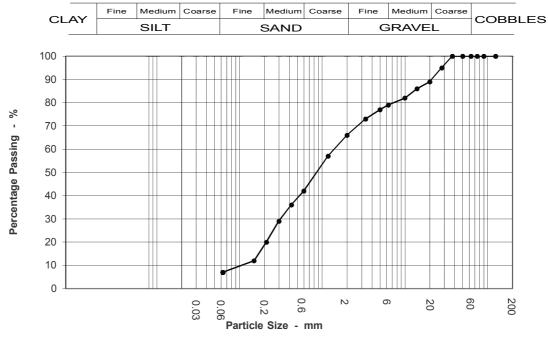
Grading Analysis					
D60 D10	48.61				
Uniformity Coefficient	N/A				

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used


Agata K-Roche

Senior Technician

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8907
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	5
Sample	Brown clayey very gravelly SAND	Depth (m):	0.50 - 1.20
Description:		Date Tested:	04/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	95		
20	89		
14	86		
10	82		
6.3	79		
5	77		
3.35	73		
2	66		
1.18	57		
0.6	42		
0.425	36		
0.3	29		
0.212	20		
0.15	12		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	34.0		
Sand	59.0		
Silt & Clay	7.0		

Grading Analysis			
D60	1.45		
D10	0.12		
Uniformity Coefficient	12.62		

Date:

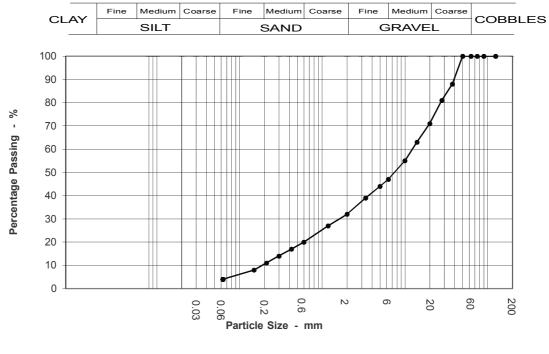
09/12/2013

1489

Senior Technician Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Sheet 1 of 1


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8908
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	7
Sample	Brown slightly clayey very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	04/12/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	88		
28	81		
20	71		
14	63		
10	55		
6.3	47		
5	44		
3.35	39		
2	32		
1.18	27		
0.6	20		
0.425	17		
0.3	14		
0.212	11		
0.15	8		
0.063	4		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	68.0		
Sand	28.0		
Silt & Clay	4.0		

Grading Analysis			
D60	12.50		
D10	0.19		
Uniformity Coefficient	65.33		

Date:

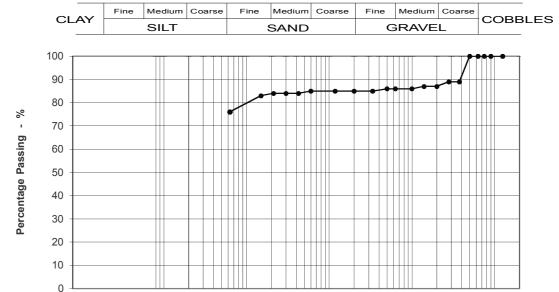
09/12/2013

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Whole sample used


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

90 Clause 9.2		
Aberdeenshire Council	Lab Sample No:	S8911
5414	Hole ID:	BH27
Stonehaven FAS	Sample Type:	В
	Sample No:	11
Reddish brown slightly sandy slightly gravelly clayey SILT	Depth (m):	2.60 - 3.40
	Date Tested:	02/12/2013
	5414 Stonehaven FAS	Aberdeenshire CouncilLab Sample No:5414Hole ID:Stonehaven FASSample Type:Reddish brown slightly sandy slightly gravelly clayey SILTDepth (m):

0.00 N.N.00 Particle Size - mm

0.03

N

ი

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	89		
28	89		
20	87		
14	87		
10	86		
6.3	86		
5	86		
3.35	85		
2	85		
1.18	85		
0.6	85		
0.425	84		
0.3	84		
0.212	84		
0.15	83		
0.063	76		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

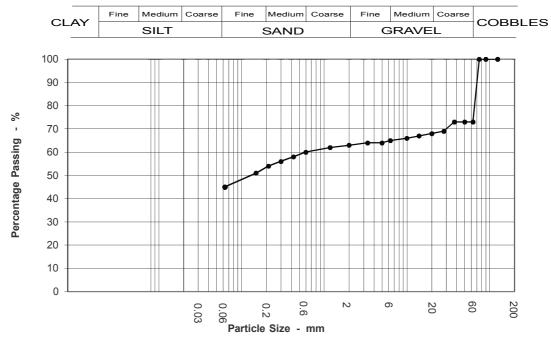
200

Sample Proportions			
Cobbles	0.0		
Gravel	15.0		
Sand	9.0		
Silt & Clay	76.0		

Grading Analysis		
D60 D10		
Uniformity Coefficient	N/A	

Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8912
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample	Reddish brown slightly gravelly slightly sandy silty CLAY with	Sample No:	13
	frequent cobbles	Depth (m):	3.40 - 4.00
Description:		Date Tested:	04/12/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	73		
50	73		
37.5	73		
28	69		
20	68		
14	67		
10	66		
6.3	65		
5	64		
3.35	64		
2	63		
1.18	62		
0.6	60		
0.425	58		
0.3	56		
0.212	54		
0.15	51		
0.063	45		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	27.0		
Gravel	10.0		
Sand	18.0		
Silt & Clay	45.0		

Grading Analysis		
D60 D10	0.60	
Uniformity Coefficient	N/A	

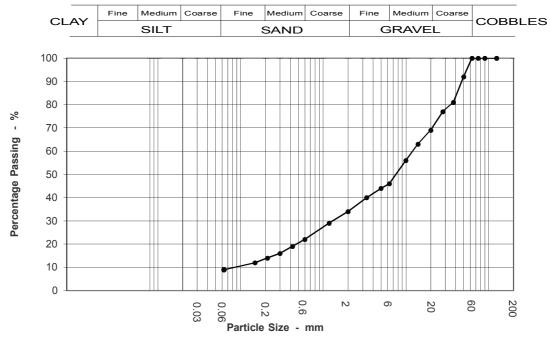
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8914
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	D
Somalo		Sample No:	17
Sample	Brown clayey very sandy GRAVEL	Depth (m):	5.00 - 5.45
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	92		
37.5	81		
28	77		
20	69		
14	63		
10	56		
6.3	46		
5	44		
3.35	40		
2	34		
1.18	29		
0.6	22		
0.425	19		
0.3	16		
0.212	14		
0.15	12		
0.063	9		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	66.0		
Sand	25.0		
Silt & Clay	9.0		

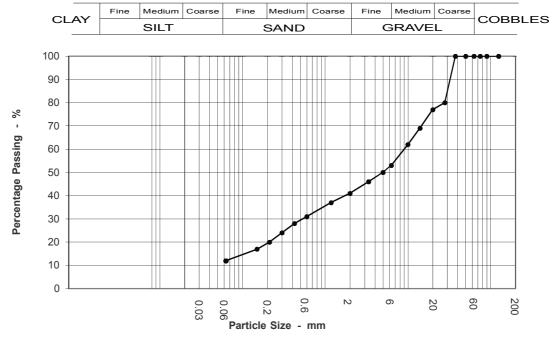
Grading Analysis		
D60	12.29	
D10	0.09	
Uniformity Coefficient	133.54	

Date:

Remarks: Sample combine with B18 @ 5.0-6.0m.

Checked and	Agata K-Roche
Approved:	Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Sheet 1 of 1

09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8915
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	20
Sample	Reddish brown clayey very sandy GRAVEL	Depth (m):	6.00 - 6.20
Description:		Date Tested:	29/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	80		
20	77		
14	69		
10	62		
6.3	53		
5	50		
3.35	46		
2	41		
1.18	37		
0.6	31		
0.425	28		
0.3	24		
0.212	20		
0.15	17		
0.063	12		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	59.0		
Sand	29.0		
Silt & Clay	12.0		

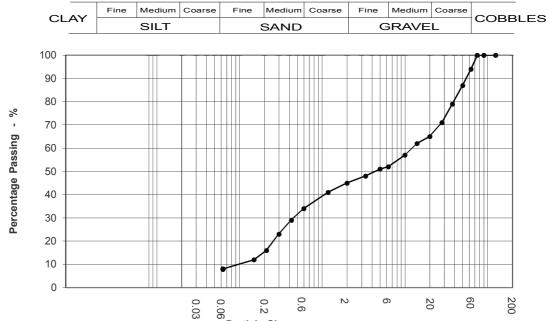
Grading Analysis		
D60 D10	9.18	
Uniformity Coefficient	N/A	

Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8916
Contract No:	5414	Hole ID:	BH28
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	5
Sample	Brown clayey very sandy GRAVEL with cobbles	Depth (m):	0.80 - 1.20
Description:		Date Tested:	05/12/2013

Particle	Size	-	mm

Sievir	Sieving Sedimentation		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	94		
50	87		
37.5	79		
28	71		
20	65		
14	62		
10	57		
6.3	52		
5	51		
3.35	48		
2	45		
1.18	41		
0.6	34		
0.425	29		
0.3	23		
0.212	16		
0.15	12		
0.063	8		

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

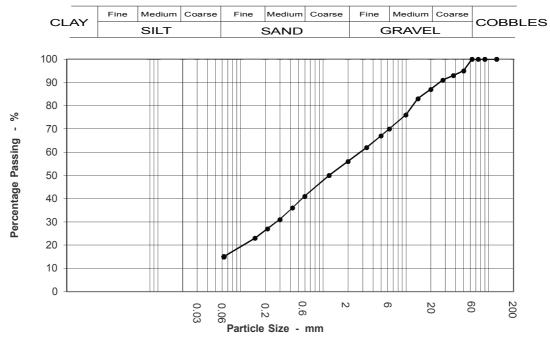
Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	6.0	
Gravel	49.0	
Sand	37.0	
Silt & Clay	8.0	

Grading Analysis		
D60	12.40	
D10	0.11	
Uniformity Coefficient	116.43	

Date:

09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8918
Contract No:	5414	Hole ID:	BH28
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	10
Sample Description:	Black clayey SAND and GRAVEL	Depth (m):	2.40 - 3.00
Description:		Date Tested:	05/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	93		
28	91		
20	87		
14	83		
10	76		
6.3	70		
5	67		
3.35	62		
2	56		
1.18	50		
0.6	41		
0.425	36		
0.3	31		
0.212	27		
0.15	23		
0.063	15		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	44.0	
Sand	41.0	
Silt & Clay	15.0	

Grading Analysis	
D60 D10	2.90
Uniformity Coefficient	N/A

Date:

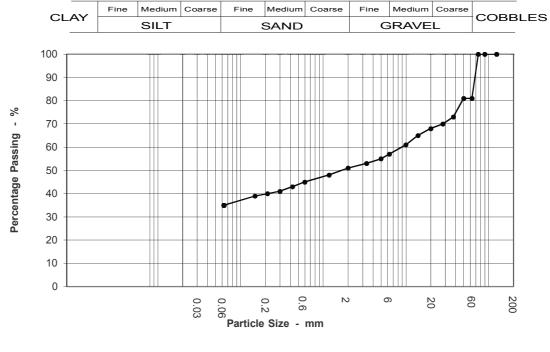
09/12/2013

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8919
Contract No:	5414	Hole ID:	BH28
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula	Prown alightly condy alightly grouply alovey CILT with	Sample No:	12
-	Brown slightly sandy slightly gravelly clayey SILT with cobbles	Depth (m):	3.00 - 3.50
Description:	cobbies	Date Tested:	28/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	81		
50	81		
37.5	73		
28	70		
20	68		
14	65		
10	61		
6.3	57		
5	55		
3.35	53		
2	51		
1.18	48		
0.6	45		
0.425	43		
0.3	41		
0.212	40		
0.15	39		
0.063	35		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	19.0		
Gravel	30.0		
Sand	16.0		
Silt & Clay	35.0		

Grading Analysis		
D60 D10	9.08	
Uniformity Coefficient	N/A	

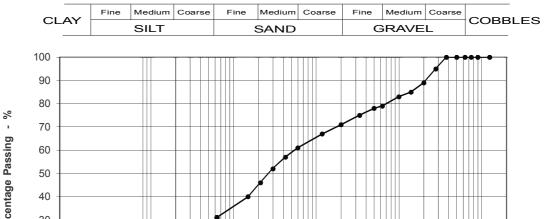
Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Whole sample used

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Sheet 1 of 1

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8920	
Contract No:	5414	Hole ID:	BH28	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Somalo		Sample No:	14	
Sample	Brown slightly gravelly sandy CLAY	Depth (m):	3.50 - 4.00	
Description:		Date Tested:	29/11/2013	

	30 20 10 0		0.03	2	O.N. e Size -	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	N	
1	Sievir	ng	Sedimen	tation	1			-
	Particle Size mm	% Passing	Particle Size mm	% Passing			BS Sieving	
	125	100			1		Sedimenta	
	90	100						
	75	100						
	63	100						
	50	100						
	37.5	100						
	28	95					S	_
	20	89					Cobbl	(
	14	85					Grav	e
	10	83				ĺ	San	
	6.3	79					Silt & C	2
	5	78						
	3.35	75						
	2	71						

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

200

60

ი

Sample Proportions			
Cobbles	0.0		
Gravel	29.0		
Sand	40.0		
Silt & Clay	31.0		

Grading Analysis		
D60 D10	0.56	
Uniformity Coefficient	N/A	

Date:

09/12/2013

1489

Checked and	ed and Agata K-Roche	
Approved:	Senior Technician	

1.18

0.6

0.425

0.3

0.212

0.15

0.063

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

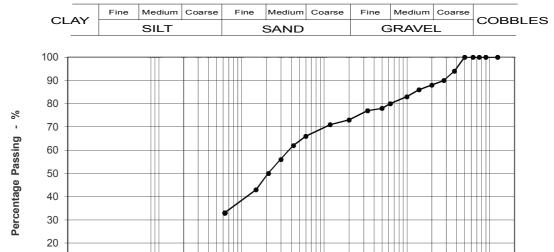
67

61

57

52

46


40

31

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8922	
Contract No:	5414	Hole ID:	BH28	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samala		Sample No:	22	
Sample	Reddish brown slightly gravelly sandy CLAY	Depth (m):	6.60 - 7.25	
Description:		Date Tested:	02/12/2013	

N

ი

0		0.03	0 06 Particl	0 iN e Size -	0 6 mm
Sievir	ng	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	100				
75	100				
63	100				
50	100				
37.5	94				
28	90				
20	88				
14	86				
10	83				
6.3	80				
5	78				
3.35	77				
2	73				
1.18	71				r
0.6	66				
0.425	62				
0.3	56				
0.212	50				
0.15	43				
0.063	33			l	Uı

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

60

200

Sample Proportions			
Cobbles	0.0		
Gravel	27.0		
Sand	40.0		
Silt & Clay	33.0		

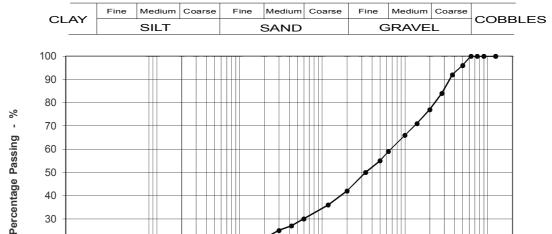
Grading Ana	alysis
D60 D10	0.38
Uniformity Coefficient	N/A

1489

Remarks:

Checked and	Agata K-Roche
Approved:	Senior Technician

10 0


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

...

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8923
Contract No:	5414	Hole ID:	BH28
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	26
Sample	Light brown sandy gravelly CLAY	Depth (m):	8.60 - 9.00
Description:		Date Tested:	05/12/2013

20 10 0		0.03		0. N e Size -	0. N 6. mm
Sievir	ng	Sediment	ation	1	
Particle Size mm	% Passing	Particle Size mm	% Passing		E Sievir
125	100				Sedimen
90	100				
75	100				
63	100				
50	96				
37.5	92				
28	84				
20	77				Cob
14	71				Gra
10	66				Sa
6.3	59				Silt 8
5	55				
3.35	50				
2	42				
1.18	36				
0.6	30				
0.425	27				

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

200

60

ი

Sample Proportions			
Cobbles	0.0		
Gravel	58.0		
Sand	26.0		
Silt & Clay	16.0		

Grading Analysis		
D60 D10	6.83	
Uniformity Coefficient	N/A	

 Approved:
 Senior Technician

 Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

0.3

0.212

0.15 0.063

Whole sample used

Agata K-Roche

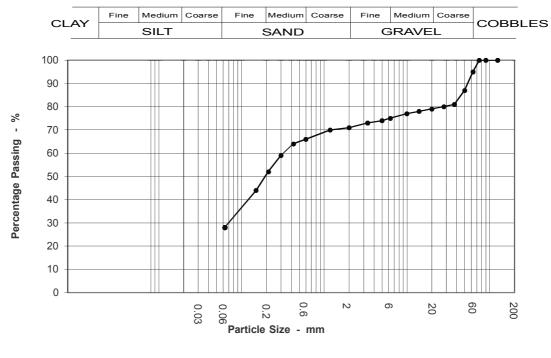
25

22

20

16

Date: 09/12/2013



Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8924
Contract No:	5414	Hole ID:	BH29
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla	Reddich brown clightly grouply yory clovey SAND with	Sample No:	3
-	Reddish brown slightly gravelly very clayey SAND with occasional cobbles	Depth (m):	0.50 - 1.00
Description:		Date Tested:	02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	95		
50	87		
37.5	81		
28	80		
20	79		
14	78		
10	77		
6.3	75		
5	74		
3.35	73		
2	71		
1.18	70		
0.6	66		
0.425	64		
0.3	59		
0.212	52		
0.15	44		
0.063	28		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	5.0		
Gravel	24.0		
Sand	43.0		
Silt & Clay	28.0		

Grading Analysis		
D60 D10	0.33	
Uniformity Coefficient	N/A	

Date:

09/12/2013

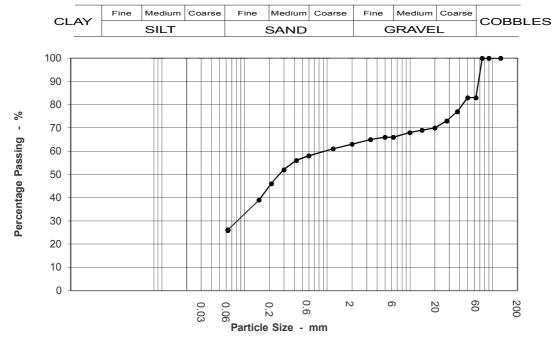
1489

Remarks:

Sheet 1 of 1

Checked and Approved:

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8925
Contract No:	5414	Hole ID:	BH29
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	5
Sample	Brown gravelly very clayey SAND with cobbles	Depth (m):	1.20 - 2.00
Description:		Date Tested:	03/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	83		
50	83		
37.5	77		
28	73		
20	70		
14	69		
10	68		
6.3	66		
5	66		
3.35	65		
2	63		
1.18	61		
0.6	58		
0.425	56		
0.3	52		
0.212	46		
0.15	39		
0.063	26		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	17.0	
Gravel	20.0	
Sand	37.0	
Silt & Clay	26.0	

Grading Analysis		
D60 D10	0.99	
Uniformity Coefficient	N/A	

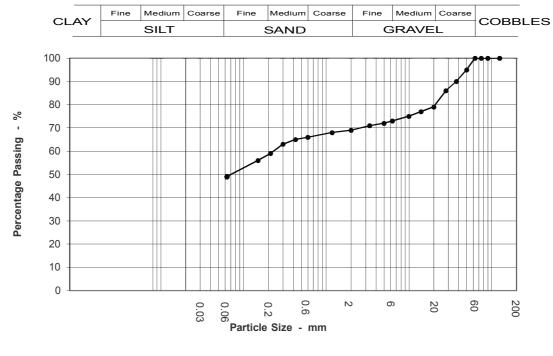
Date:

09/12/2013

Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8928
Contract No:	5414	Hole ID:	BH29
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	9
Sample	Reddish brown slightly sandy slightly gravelly silty CLAY	Depth (m):	2.60 - 3.00
Description:		Date Tested:	04/12/2013

Sievir	ng	Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	70 T assiriy	mm	70 T assing
125	100		
90	100		
75	100		
63	100		
50	95		
37.5	90		
28	86		
20	79		
14	77		
10	75		
6.3	73		
5	72		
3.35	71		
2	69		
1.18	68		
0.6	66		
0.425	65		
0.3	63		
0.212	59		
0.15	56		
0.063	49		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	31.0	
Sand	20.0	
Silt & Clay	49.0	

Grading Analysis		
D60 D10	0.23	
Uniformity Coefficient	N/A	

Date:

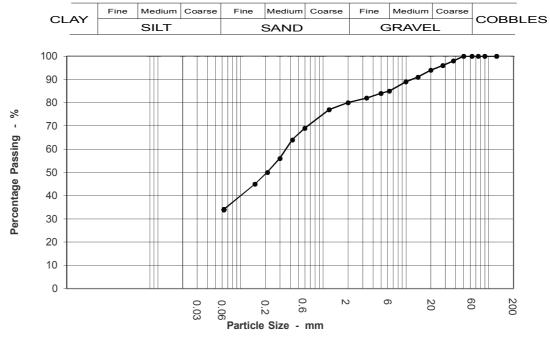
09/12/2013

Approved: Senior Unit 10 Wessex Road Bourne

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8930
Contract No:	5414	Hole ID:	BH29
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	16
Sample	Reddish brown slightly gravelly sandy CLAY	Depth (m):	4.70 - 5.00
Description:		Date Tested:	04/12/2013

Siev	ing	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	98		
28	96		
20	94		
14	91		
10	89		
6.3	85		
5	84		
3.35	82		
2	80		
1.18	77		
0.6	69		
0.425	64		
0.3	56		
0.212	50		
0.15	45		
0.063	34		

Test Method				
BS 1377 : Part 2 : 1990				
Sieving	Clause Depth (m):			
Sedimentation	N/A			

Sample Proportions					
Cobbles	0.0				
Gravel	20.0				
Sand	46.0				
Silt & Clay	34.0				

Grading Analysis					
D60 D10	0.36				
Uniformity Coefficient	N/A				

Date:

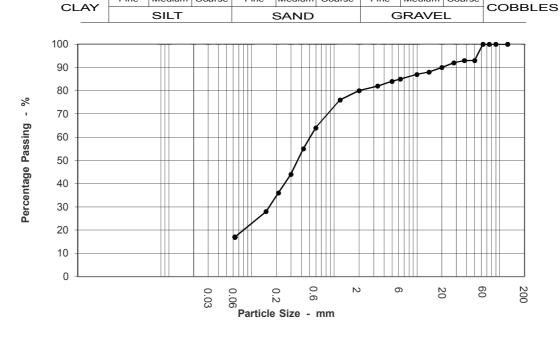
09/12/2013

Approved: Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Senior Technician

Whole sample used

Agata K-Roche


Sheet 1 of 1

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshir	e Coun	cil				Lab	Sampl	e No:	S8929
Contract No:	5414						Hole	e ID:		BH29
Contract Name:	Stonehaven F	AS					San	nple Ty	pe:	В
Comula							San	nple No	:	15
Sample	Reddish brow	n claye	y gravel	Iy SANE)		Dep	th (m):		4.00 - 4.70
Description:							-	e Tèste		02/12/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	93		
28	92		
20	90		
14	88		
10	87		
6.3	85		
5	84		
3.35	82		
2	80		
1.18	76		
0.6	64		
0.425	55		
0.3	44		
0.212	36		
0.15	28		
0.063	17		

Test Method				
BS 1377 : Part 2 : 1990				
Sieving	Clause Depth (m):			
Sedimentation	N/A			

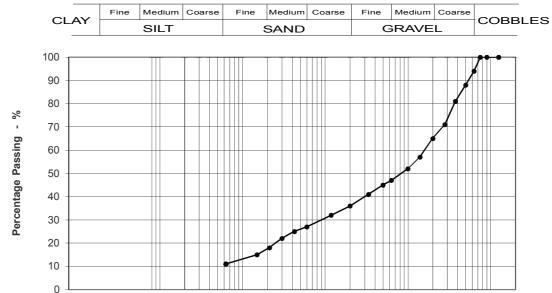
Sample Proportions						
Cobbles	0.0					
Gravel	20.0					
Sand	63.0					
Silt & Clay	17.0					

Grading Analysis					
D60 D10	0.52				
Uniformity Coefficient	N/A				

Date:

09/12/2013

Remarks:	
-----------------	--


Checked and	Agata K-Roche
Approved:	Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8689
Contract No:	5414	Hole ID:	CDR1
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample		Sample No:	5
	Brown silty very sandy GRAVEL with cobbles	Depth (m):	1.20 - 2.00
Description:		Date Tested:	28/11/2013

0.06 Particle Size - mm

0.03

0.6

N

ი

Sieving		Sedimentation		
Particle Size	% Passing	Particle Size	% Passing	
mm	70 T 233119	mm	70 T 43311g	
125	100			
90	100			
75	100			
63	94			
50	88			
37.5	81			
28	71			
20	65			
14	57			
10	52			
6.3	47			
5	45			
3.35	41			
2	36			
1.18	32			
0.6	27			
0.425	25			
0.3	22			
0.212	18			
0.15	15			
0.063	11			

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

20

60

200

Sample Proportions				
Cobbles	6.0			
Gravel	58.0			
Sand	25.0			
Silt & Clay	11.0			

Grading Analysis			
D60 D10	16.25		
Uniformity Coefficient	N/A		

Sheet 1 of 1

Remarks:

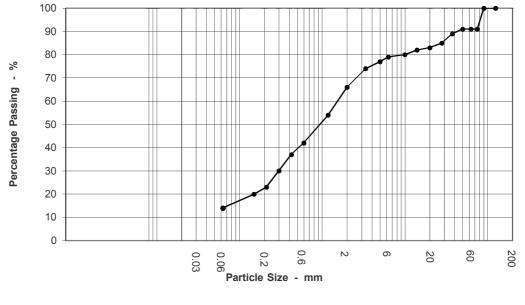
Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2					
Client:	Aberdeenshire Council	Lab Sample No:	S8690		
Contract No:	5414	Hole ID:	CDR1		
Contract Name:	Stonehaven FAS	Sample Type:	В		
Samula		Sample No:	7		
Sample	Brown silty very gravelly SAND with cobbles	Depth (m):	2.00 - 3.00		
Description:		Date Tested:	05/12/2013		

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	91		
63	91		
50	91		
37.5	89		
28	85		
20	83		
14	82		
10	80		
6.3	79		
5	77		
3.35	74		
2	66		
1.18	54		
0.6	42		
0.425	37		
0.3	30		
0.212	23		
0.15	20		
0.063	14		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	9.0			
Gravel	25.0			
Sand	52.0			
Silt & Clay	14.0			

Grading Analysis			
D60 D10	1.59		
Uniformity Coefficient	N/A		

Date:

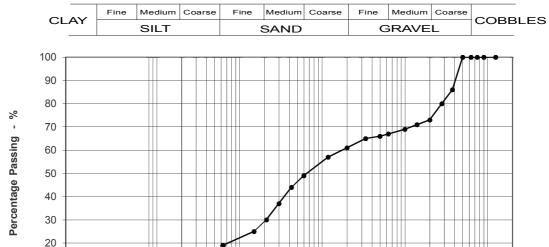
09/12/2013

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8691
Contract No:	5414	Hole ID:	CDR1
Contract Name:	Stonehaven FAS	Sample Type:	В
Somolo		Sample No:	9
Sample	Black gravelly sandy PEAT	Depth (m):	3.00 - 4.00
Description:		Date Tested:	28/11/2013

0.03

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	86		
28	80		
20	73		
14	71		
10	69		
6.3	67		
5	66		
3.35	65		
2	61		
1.18	57		
0.6	49		
0.425	44		
0.3	37		
0.212	30		
0.15	25		
0.063	19		

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

10 0

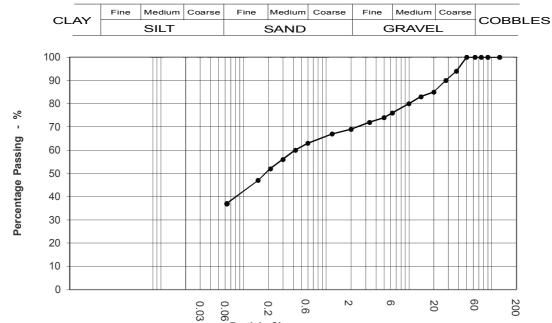
0 00 Particl	0 iN e Size -	0 N 60 mm	σ	20	60	200
tion			Test	t Method		
% Passing			BS 1377	: Part 2 : 1	1990	
/o Fassing		Sie	ving	Cla	use Dep	th (m):
		Sedime	entation		N/A	

Sample Proportions				
Cobbles	0.0			
Gravel	39.0			
Sand	42.0			
Silt & Clay	19.0			

Grading Analysis			
D60 D10	1.80		
Uniformity Coefficient	N/A		

1489

Remarks:


Checked and Approved:

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8692
Contract No:	5414	Hole ID:	CDR1
Contract Name:	Stonehaven FAS	Sample Type:	В
Samala		Sample No:	11
Sample Descriptions	Reddish brown slightly sandy slightly gravelly silty CLAY	Depth (m):	5.00 - 5.50
Description:		Date Tested:	04/12/2013

	50 U	0 06 Particle	0 N 9 Size -	0 6 • mm	Ν	o	20	60	200
Sedimer	ntat	tion				Test M	ethod		
ticle Size	0	% Passing		BS 1377 : Part 2 : 1990					
mm	1	o rassing			Sieving		Claus	se Depth	(m):
				Se	edimentat	ion		N/A	

Sample Proportions				
Cobbles	0.0			
Gravel	31.0			
Sand	32.0			
Silt & Clay	37.0			

Grading Analysis				
D60 D10	0.43			
Uniformity Coefficient	N/A			

. = •		
90	100	
75	100	
63	100	
50	100	
37.5	94	
28	90	
20	85	
14	83	
10	80	
6.3	76	
5	74	
3.35	72	
2	69	
1.18	67	
0.6	63	
0.425	60	
0.3	56	
0.212	52	
0.15	47	
0.063	37	

Particle Size

Sieving

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

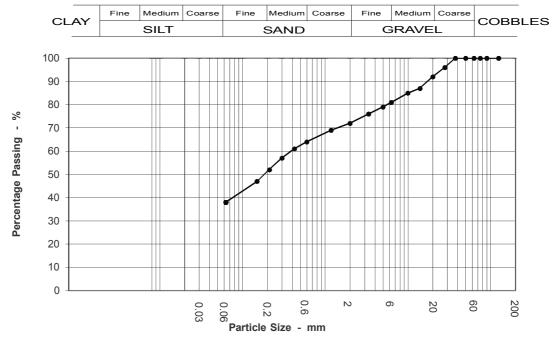
% Passing

100

Particle Size

mm

125


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2					
Client:	Aberdeenshire Council	Lab Sample No:	S8693		
Contract No:	5414	Hole ID:	CDR1		
Contract Name:	Stonehaven FAS	Sample Type:	В		
Somalo		Sample No:	15		
Sample	Reddish brown slightly gravelly slightly sandy CLAY	Depth (m):	6.50 - 7.00		
Description:		Date Tested:	27/11/2013		

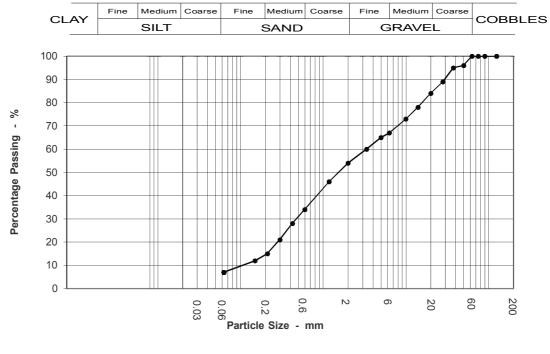
Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	96		
20	92		
14	87		
10	85		
6.3	81		
5	79		
3.35	76		
2	72		
1.18	69		
0.6	64		
0.425	61		
0.3	57		
0.212	52		
0.15	47		
0.063	38		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	0.0			
Gravel	28.0			
Sand	34.0			
Silt & Clay	38.0			

Grading Analysis			
D60 D10	0.39		
Uniformity Coefficient	N/A		

Remarks:


Checked and	Agata K-Roche
Approved:	Senior Technician
Unit 10 Wessex Roa	d Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	00 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8695
Contract No:	5414	Hole ID:	CDR1
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	19
Sample	Reddish brown very gravelly SAND	Depth (m):	8.00 - 8.30
Description:		Date Tested:	27/11/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	96		
37.5	95		
28	89		
20	84		
14	78		
10	73		
6.3	67		
5	65		
3.35	60		
2	54		
1.18	46		
0.6	34		
0.425	28		
0.3	21		
0.212	15		
0.15	12		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	46.0		
Sand	47.0		
Silt & Clay	7.0		

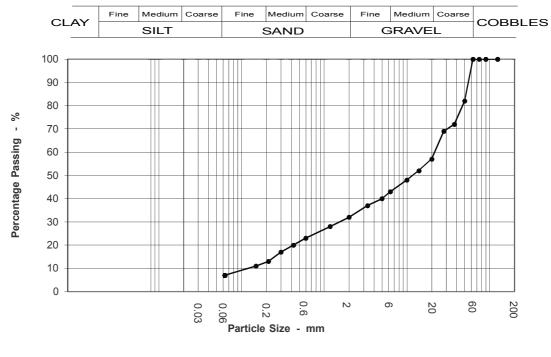
Grading Analysis		
D60	3.35	
D10	0.12	
Uniformity Coefficient	29.08	

Date:

09/12/2013

Agata K-Roche Checked and Approved: Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8696
Contract No:	5414	Hole ID:	CDR2
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	6
Sample	Brown slightly silty sandy GRAVEL	Depth (m):	1.00 - 1.50
Description:		Date Tested:	28/11/2013

Sievir	Sieving		tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	82		
37.5	72		
28	69		
20	57		
14	52		
10	48		
6.3	43		
5	40		
3.35	37		
2	32		
1.18	28		
0.6	23		
0.425	20		
0.3	17		
0.212	13		
0.15	11		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	68.0		
Sand	25.0		
Silt & Clay	7.0		

Grading Analysis		
D60	22.00	
D10	0.13	
Uniformity Coefficient	171.54	

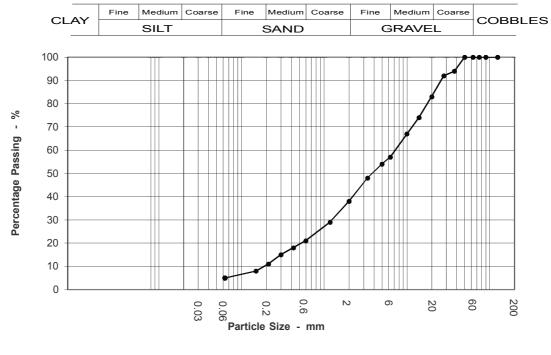
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8697
Contract No:	5414	Hole ID:	CDR3
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula		Sample No:	4
Sample	Brown slightly clayey very sandy GRAVEL	Depth (m):	1.00 - 1.20
Description:		Date Tested:	26/11/2013

Sieving		Sediment	tation
Particle Size	% Passing	Particle Size	% Passing
mm	10 Fassing	mm	70 Fassing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	94		
28	92		
20	83		
14	74		
10	67		
6.3	57		
5	54		
3.35	48		
2	38		
1.18	29		
0.6	21		
0.425	18		
0.3	15		
0.212	11		
0.15	8		
0.063	5		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	0.0		
Gravel	62.0		
Sand	33.0		
Silt & Clay	5.0		

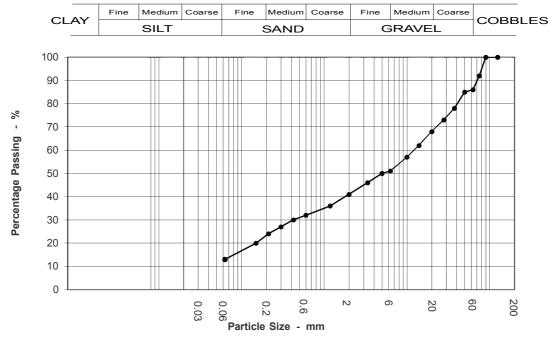
Grading Analysis		
D60	7.41	
D10	0.19	
Uniformity Coefficient	38.73	

Date:

09/12/2013

Checked andAgata K-RocheApproved:Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT


Whole sample used

Remarks:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8698
Contract No:	5414	Hole ID:	CDR3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somolo		Sample No:	6
Sample	Dark grey and brown sandy silty GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	29/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	92		
63	86		
50	85		
37.5	78		
28	73		
20	68		
14	62		
10	57		
6.3	51		
5	50		
3.35	46		
2	41		
1.18	36		
0.6	32		
0.425	30		
0.3	27		
0.212	24		
0.15	20		
0.063	13		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions			
Cobbles	14.0		
Gravel	45.0		
Sand	28.0		
Silt & Clay	13.0		

Grading Analysis		
D60 D10	12.40	
Uniformity Coefficient	N/A	

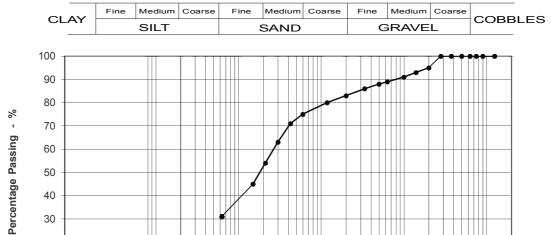
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8700	
Contract No:	5414	Hole ID:	CDR3	
Contract Name:	Stonehaven FAS	Sample Type:	В	
Samula		Sample No:	10	
Sample Description:	Dark brown slightly gravelly sandy PEAT	Depth (m):	2.00 - 2.50	
Description:		Date Tested:	28/11/2013	

N

ი

0		0.03	0 00 Particl	0 N e Size -	ი თ mm
Sievir	ng	Sediment	tation	1	
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	100				
75	100				
63	100				
50	100				
37.5	100				
28	100				
20	95				
14	93				
10	91				
6.3	89				
5	88				
3.35	86				
2	83				
1.18	80				-
0.6	75				
0.425	71				
0.3	63				
0.212	54				
0.15	45				
0.063	31				Ui

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	17.0	
Sand	52.0	
Silt & Clay	31.0	

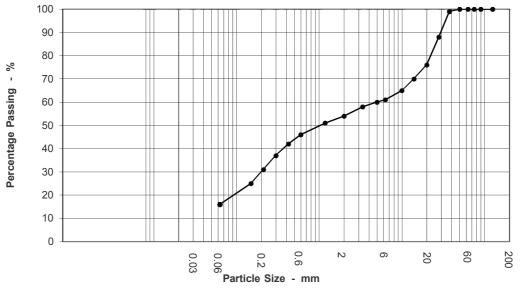
Grading Analysis		
D60 D10	0.27	
Uniformity Coefficient	N/A	

1489

Remarks:

Checked and	Agata K-Roche	
Approved:	Senior Technician	

20 10 0


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Client:	Aberdeenshire Council	Lab Sample No:	S8701
Contract No:	5414	Hole ID:	CDR3
Contract Name:	Stonehaven FAS	Sample Type:	В
0		Sample No:	12
Sample	Dark grey very gravelly silty SAND	Depth (m):	3.00 - 3.50
Description:	Date Tested:	05/12/2013	

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	99		
28	88		
20	76		
14	70		
10	65		
6.3	61		
5	60		
3.35	58		
2	54		
1.18	51		
0.6	46		
0.425	42		
0.3	37		
0.212	31		
0.15	25		
0.063	16		

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	46.0	
Sand	38.0	
Silt & Clay	16.0	

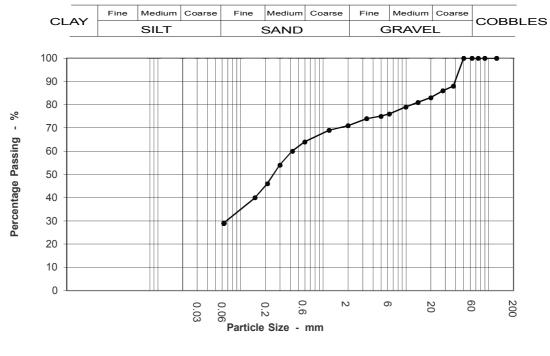
Grading Analysis	
D60 D10	5.00
Uniformity Coefficient	N/A

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Whole sample used

Agata K-Roche

Senior Technician


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8703
Contract No:	5414	Hole ID:	CDR3
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	16
Sample	Reddish brown slightly gravelly sandy clayey SILT	Depth (m):	5.00 - 5.50
Description:		Date Tested:	27/11/2013

Sievir	ng	Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	88		
28	86		
20	83		
14	81		
10	79		
6.3	76		
5	75		
3.35	74		
2	71		
1.18	69		
0.6	64		
0.425	60		
0.3	54		
0.212	46		
0.15	40		
0.063	29		

Agata K-Roche

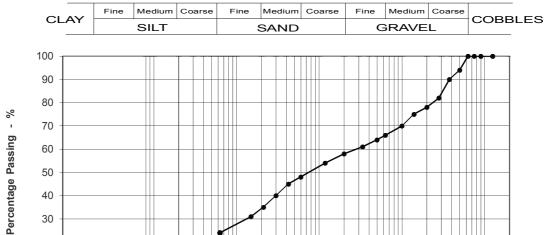
Senior Technician

Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	29.0	
Sand	42.0	
Silt & Clay	29.0	

Grading Analysis		
D60 D10	0.43	
Uniformity Coefficient	N/A	

Remarks:


Checked and Approved:

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8704
Contract No:	5414	Hole ID:	CDR3
Contract Name:	Stonehaven FAS	Sample Type:	В
Samala		Sample No:	18
Sample Description:	Brown slightly sandy gravelly SILT	Depth (m):	6.00 - 6.50
Description:		Date Tested:	03/12/2013

N

ი

0		0.03	0.06		0.6
			Particl	e Size -	mm
Sievir	ng	Sediment	tation		
Particle Size mm	% Passing	Particle Size mm	% Passing		
125	100				5
90	100				
75	100				
63	100				
50	94				
37.5	90				
28	82				
20	78				
14	75				
10	70				
6.3	66				
5	64				
3.35	61				
2	58				
1.18	54				F
0.6	48				
0.425	45				
0.3	40				
0.212	35				
0.15	31				
0.063	24				Uı

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

20

60

200

Sample Proportions		
Cobbles	0.0	
Gravel	42.0	
Sand	34.0	
Silt & Clay	24.0	

Grading Analysis		
D60 D10	2.90	
Uniformity Coefficient	N/A	

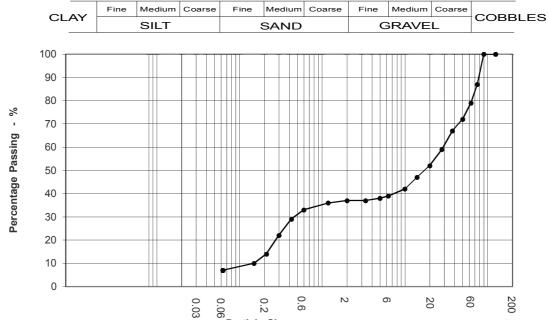
Date:

09/12/2013

1489

Remarks:

Checked and Approved:


Agata K-Roche Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8705
Contract No:	5414	Hole ID:	CDR4
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo	Prownich grow clightly cilty condy CDAV/EL with frequent	Sample No:	4
Sample Description:	Brownish grey slightly silty sandy GRAVEL with frequent cobbles	Depth (m):	0.60 - 0.80
Description:	CODDIES	Date Tested:	28/11/2013

Particle S	Size - mm
------------	-----------

Sievii	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	87		
63	79		
50	72		
37.5	67		
28	59		
20	52		
14	47		
10	42		
6.3	39		
5	38		
3.35	37		
2	37		
1.18	36		
0.6	33		
0.425	29		
0.3	22		
0.212	14		
0.15	10		
0.063	7		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	21.0	
Gravel	42.0	
Sand	30.0	
Silt & Clay	7.0	

Grading Analysis		
D60	29.19	
D10	0.15	
Uniformity Coefficient	194.58	

Date:

09/12/2013

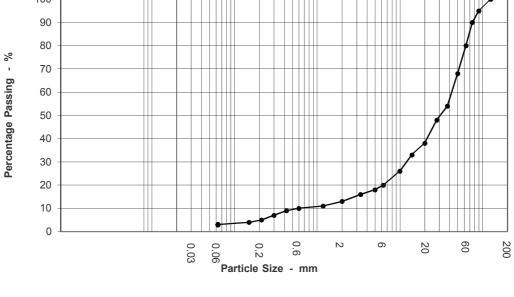
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8706
Contract No:	5414	Hole ID:	CDR4
Contract Name:	Stonehaven FAS	Sample Type:	В
Comula		Sample No:	6
Sample	Brown sandy GRAVEL with frequent cobbles	Depth (m):	0.90 - 1.10
Description:		Date Tested:	29/11/2013

Sieving		Sediment	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	95		
75	90		
63	80		
50	68		
37.5	54		
28	48		
20	38		
14	33		
10	26		
6.3	20		
5	18		
3.35	16		
2	13		
1.18	11		
0.6	10		
0.425	9		
0.3	7		
0.212	5		
0.15	4		
0.063	3		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

Sample Proportions		
Cobbles	20.0	
Gravel	67.0	
Sand	10.0	
Silt & Clay	3.0	

Grading Analysis		
D60	42.86	
D10	0.60	
Uniformity Coefficient	71.43	

Sheet 1 of 1

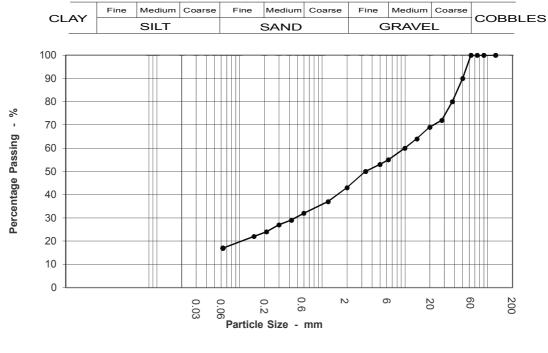
Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche

Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8707
Contract No:	5414	Hole ID:	CDR4
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	8
Sample	Black and light brown silty very sandy GRAVEL	Depth (m):	1.20 - 2.00
Description:		Date Tested:	28/11/2013

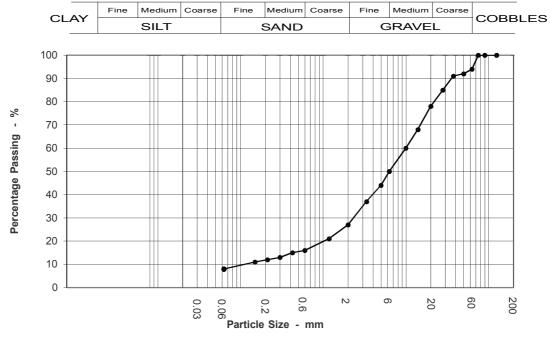
Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	90		
37.5	80		
28	72		
20	69		
14	64		
10	60		
6.3	55		
5	53		
3.35	50		
2	43		
1.18	37		
0.6	32		
0.425	29		
0.3	27		
0.212	24		
0.15	22		
0.063	17		

Test Method		
BS 1377 : Part 2 : 1990		
Sieving Clause Depth (m):		
Sedimentation	N/A	

Sample Proportions		
Cobbles	0.0	
Gravel	57.0	
Sand	26.0	
Silt & Clay	17.0	

Grading Ana	alysis
D60 D10	10.00
Uniformity Coefficient	N/A

1489


Checked and	Agata K-Roche
Approved:	Senior Technician
Unit 10 Wessex Roa	d Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8710
Contract No:	5414	Hole ID:	CDR4
Contract Name:	Stonehaven FAS	Sample Type:	В
Samula	Prown ailty condy CRAVEL with apphlac and poskate of group	Sample No:	14
•	Brown silty sandy GRAVEL with cobbles and pockets of grey CLAY	Depth (m):	3.00 - 3.50
Description:		Date Tested:	05/12/2013

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	94		
50	92		
37.5	91		
28	85		
20	78		
14	68		
10	60		
6.3	50		
5	44		
3.35	37		
2	27		
1.18	21		
0.6	16		
0.425	15		
0.3	13		
0.212	12		
0.15	11		
0.063	8		

Whole sample used

Agata K-Roche

Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

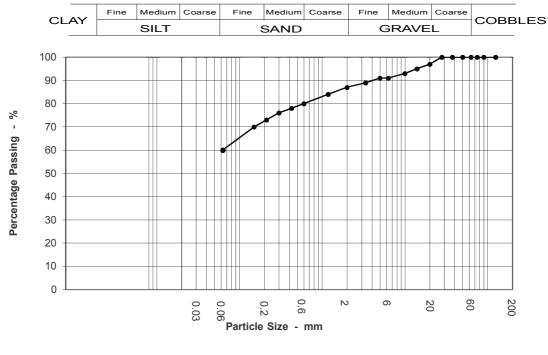
Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

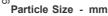
Sample Proportions		
Cobbles	6.0	
Gravel	67.0	
Sand	19.0	
Silt & Clay	8.0	

Grading Analysis		
D60	10.00	
D10	0.12	
Uniformity Coefficient	82.64	

Date:

09/12/2013


Remarks:


Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 199	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8711
Contract No:	5414	Hole ID:	CDR4
Contract Name:	Stonehaven FAS	Sample Type:	В
Sample		Sample No:	17
•	Brown slightly gravelly slightly sandy clayey SILT	Depth (m):	4.00 - 5.00
Description:		Date Tested:	27/11/2013

Sieving		Sedimentatio	on
Particle Si mm	ze % Passing	Particle Size %	Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	100		
20	97		
14	95		
10	93		
6.3	91		
5	91		
3.35	89		
2	87		
1.18	84		
0.6	80		
0.425	78		
0.3	76		
0.212	73		
0.15	70		
0.063	60		

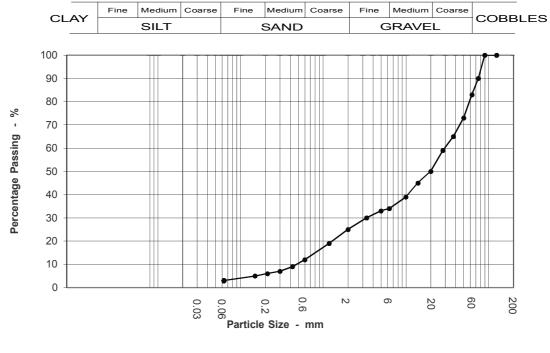
Test Method	
BS 1377 : Part 2 : 1990	
Sieving	Clause Depth (m):
Sedimentation	N/A

Sample Proportions		
Cobbles	0.0	
Gravel	13.0	
Sand	27.0	
Silt & Clay	60.0	

Grading Analysis		
D60 D10	0.06	
Uniformity Coefficient	N/A	

1489

Remarks:	
-----------------	--


Checked and	Agata K-Roche
Approved:	Senior Technician

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 1990 Clause 9.2				
Client:	Aberdeenshire Council	Lab Sample No:	S8931	
Contract No:	5414	Hole ID:	TP3	
Contract Name:	Stonehaven FAS	Sample Type:	LB	
Somalo		Sample No:	3	
Sample	Brown sandy GRAVEL with cobbles	Depth (m):	0.20 - 0.80	
Description:		Date Tested:	28/11/2013	

Sievir	ng	Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	90		
63	83		
50	73		
37.5	65		
28	59		
20	50		
14	45		
10	39		
6.3	34		
5	33		
3.35	30		
2	25		
1.18	19		
0.6	12		
0.425	9		
0.3	7		
0.212	6		
0.15	5		
0.063	3		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving	Clause Depth (m):		
Sedimentation	N/A		

Sample Proportions				
Cobbles	17.0			
Gravel	58.0			
Sand	22.0			
Silt & Clay	3.0			

Grading Analysis				
D60	29.58			
D10	0.48			
Uniformity Coefficient	61.21			

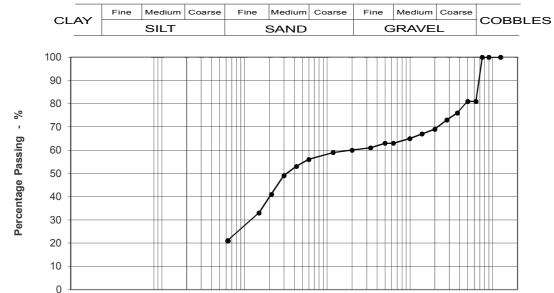
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT Sheet 1 of 1

Remarks:

Checked and Approved:

Whole sample used

Agata K-Roche


Senior Technician

Date: 09/12/2013

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8932
Contract No:	5414	Hole ID:	TP5
Contract Name:	Stonehaven FAS	Sample Type:	LB
Samula		Sample No:	4
Sample	Brownish grey slightly gravelly silty SAND	Depth (m):	0.50 - 1.30
Description:		Date Tested:	28/11/2013

N

ი

	0		0.03	0.00 Particl	0 i2 e Size -	0.6 • mm
1	Sievir	na	Sediment	tation	1	
	Particle Size mm	% Passing	Particle Size mm	% Passing		
	125	100				5
	90	100				
	75	100				
	63	81				
	50	81				
	37.5	76				-
	28	73				
	20	69				
	14	67				
	10	65				
	6.3	63				
	5	63				
	3.35	61				
	2	60				
	1.18	59				
	0.6	56				
	0.425	53				
	0.3	49				
	0.212	41				
	0.15	33				
ļ	0.063	21				U

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

20

60

200

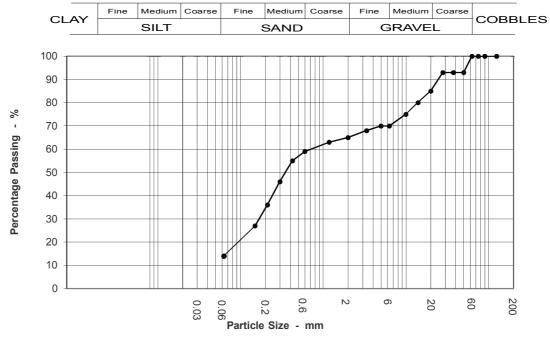
Sample Proportions			
Cobbles	19.0		
Gravel	21.0		
Sand	39.0		
Silt & Clay	21.0		

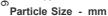
Grading Analysis			
D60 D10	2.00		
Uniformity Coefficient	N/A		

Date:

09/12/2013

Remarks: Whole sample used Agata K-Roche Checked and Approved:


Senior Technician


Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8933
Contract No:	5414	Hole ID:	TP5
Contract Name:	Stonehaven FAS	Sample Type:	В
Somalo		Sample No:	6
Sample	Brown slightly slightly gravelly SAND	Depth (m):	1.30 - 1.50
Description:		Date Tested:	28/11/2013

Sieving		Sedimentation	
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	93		
37.5	93		
28	93		
20	85		
14	80		
10	75		
6.3	70		
5	70		
3.35	68		
2	65		
1.18	63		
0.6	59		
0.425	55		
0.3	46		
0.212	36		
0.15	27		
0.063	14		

Test Method			
BS 1377 : Part 2 : 1990			
Sieving Clause Depth (m):			
Sedimentation	N/A		

Sample Proportions			
Cobbles	0.0		
Gravel	35.0		
Sand	51.0		
Silt & Clay	14.0		

Grading Analysis			
D60 D10	0.75		
Uniformity Coefficient	N/A		

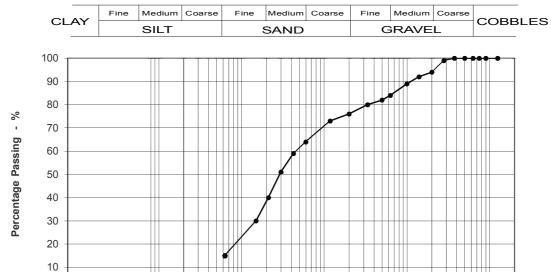
1489

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician

Date: 09/12/2013


Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

BS1377 : Part 2 : 19	90 Clause 9.2		
Client:	Aberdeenshire Council	Lab Sample No:	S8934
Contract No:	5414	Hole ID:	TP6
Contract Name:	Stonehaven FAS	Sample Type:	LB
Samula		Sample No:	2
Sample	Dark brown slightly silty slightly gravelly SAND	Depth (m):	0.30 - 0.70
Description:		Date Tested:	27/11/2013

0.00 N 0.00 Particle Size - mm

0.03

N

ი

Sieving		Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	100		
37.5	100		
28	99		
20	94		
14	92		
10	89		
6.3	84		
5	82		
3.35	80		
2	76		
1.18	73		
0.6	64		
0.425	59		
0.3	51		
0.212	40		
0.15	30		
0.063	15		

0

Test Method		
BS 1377 : Part 2 : 1990		
Sieving	Clause Depth (m):	
Sedimentation	N/A	

20

60

200

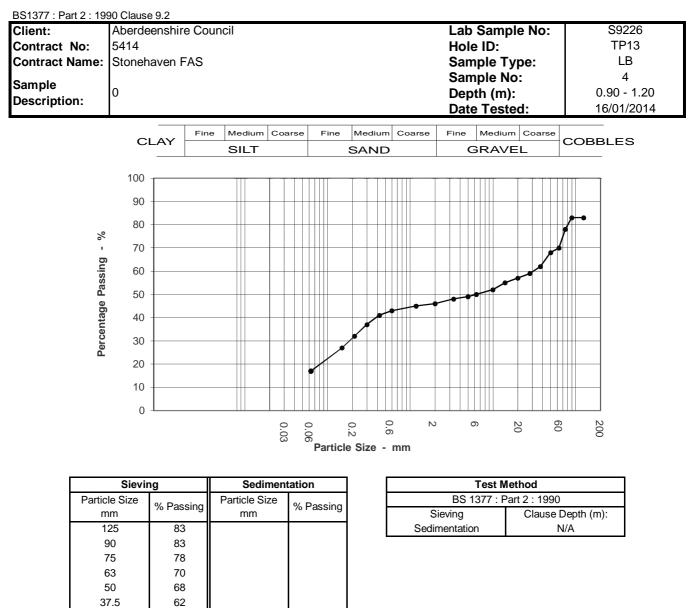
Sample Proportions		
Cobbles	0.0	
Gravel	24.0	
Sand	61.0	
Silt & Clay	15.0	

Grading Analysis	
D60 D10	0.46
Uniformity Coefficient	N/A

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Agata K-Roche

Senior Technician


Date: 09/12/2013

Remarks:

Checked and Approved:

DETERMINATION OF PARTICLE SIZE DISTRIBUTION WET SIEVING METHOD

Sample Proportions		
Cobbles	30.0	
Gravel	24.0	
Sand	29.0	
Silt & Clay	17.0	

Grading Analysis	
D60 D10	31.17
Uniformity Coefficient	N/A

16/01/2014

Remarks:

28

20

14

10

6.3

5 3.35

2

1.18 0.6

0.425

0.3

0.212

0.15

0.063

59

57 55

52

50

49

48 46

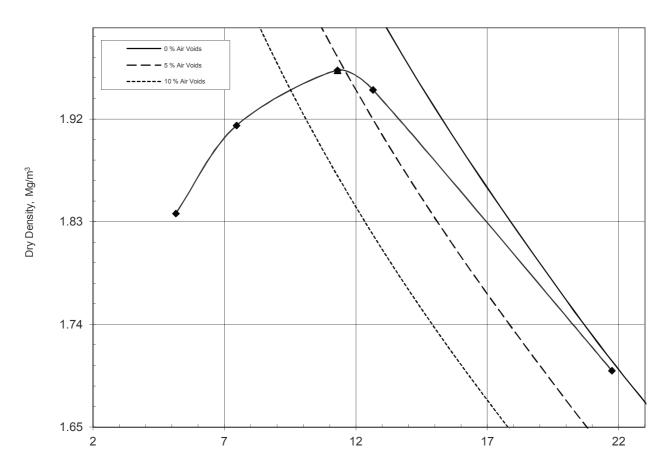
45

43

41

37

32 27


17

Checked and	D Oates	
Approved:	Quality Co-ordinator	Date:
Unit 10 Wessex Road	Bourne end Buckinghamshire SL8 5DT	

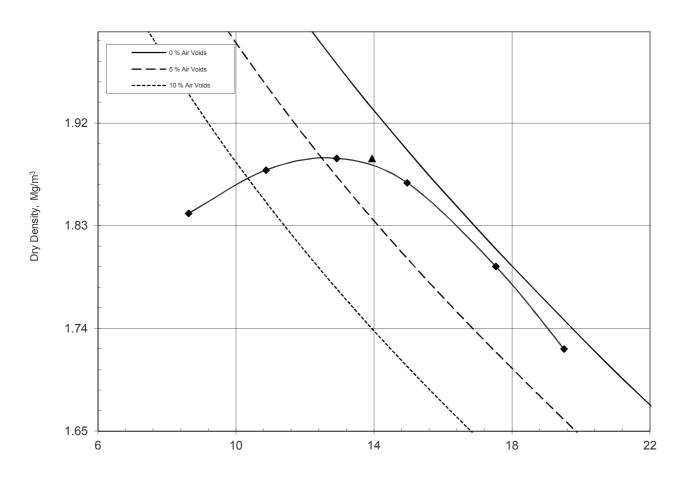
Environmental Services MOISTURE CONTENT/DRY DENSITY RELATIONSHIP

BS1377 : Part 4 : 19	90				
Client:	Aberdeenshire Council	Lab Sample No:		S8740)
Contract No:	5414	Hole ID:		BH4	
Contract Name:	Stonehaven FAS	Sample Type:		В	
Sampla		Sample No:		6	
Sample Description:	Brown slightly clayey slightly gravelly SAND	Depth (m):	1.90	-	3.00
Description:		Date Tested:	25/	/11/20	13

Moisture Content, %

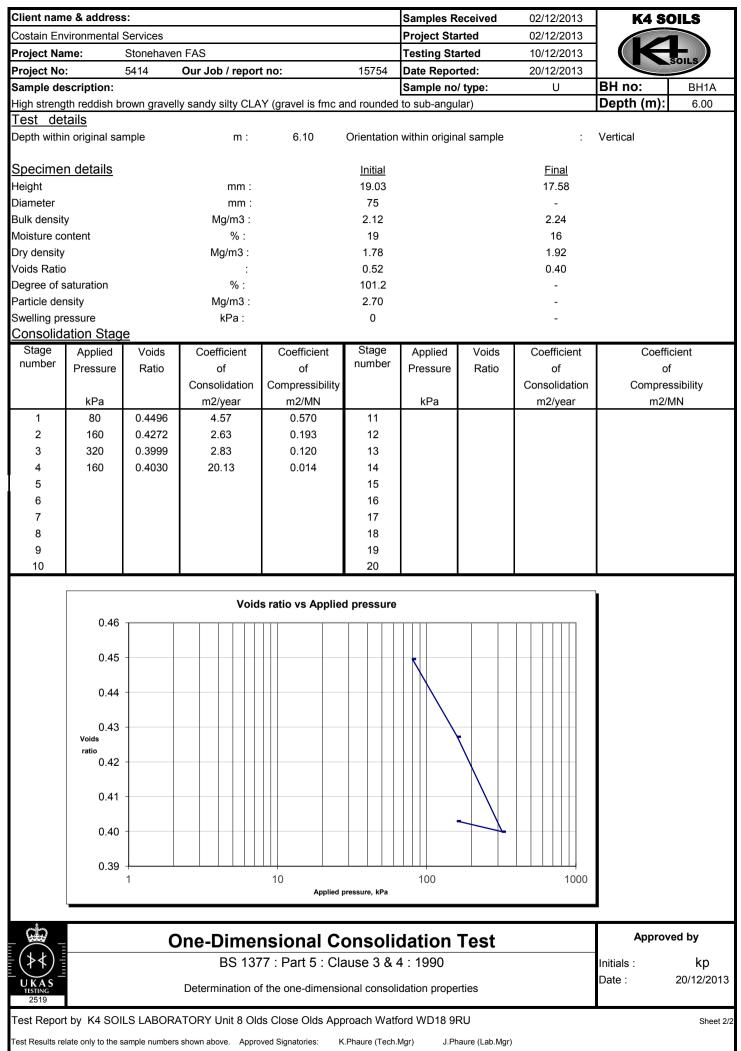
Preparation		AIR DRIED
Test Method		2.5 kg Rammer
Mould Type		STANDARD
Samples Used		SINGLE SAMPLE
Mass Retained on 37.5 mm Sieve	%	0
Mass Retained on 20.0 mm Sieve	%	2
Particle Density - ASSUMED	Mg/m³	2.72
Maximum Dry Density	Mg/m³	1.96
Optimum Moisture Content	%	11

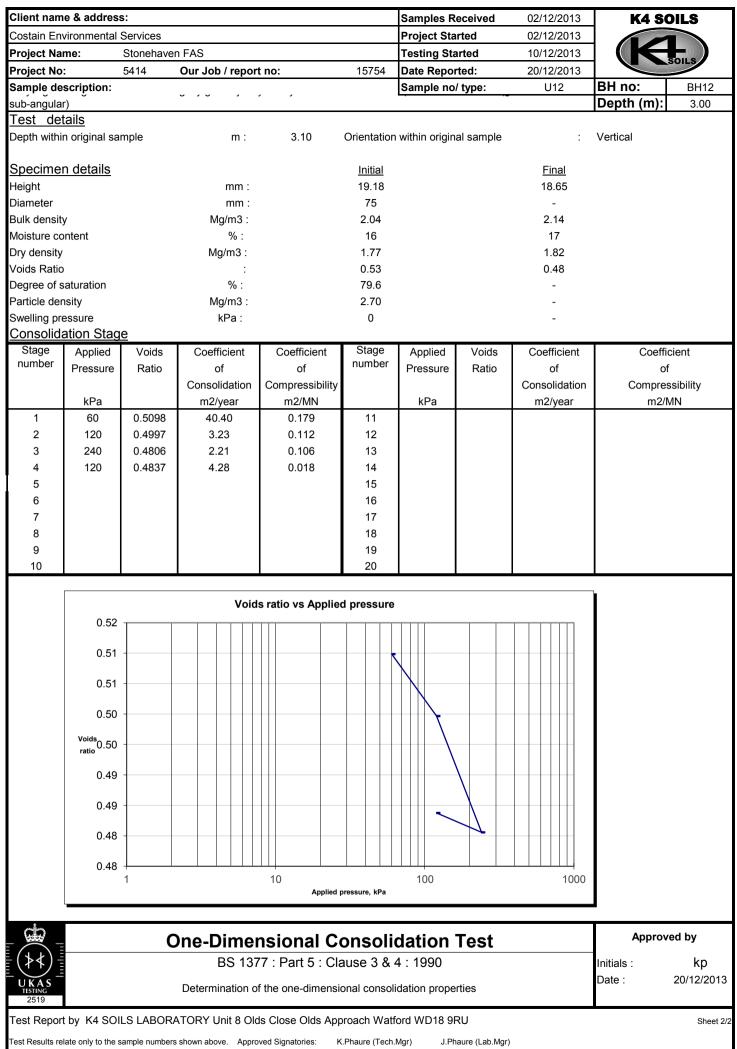
Remarks:

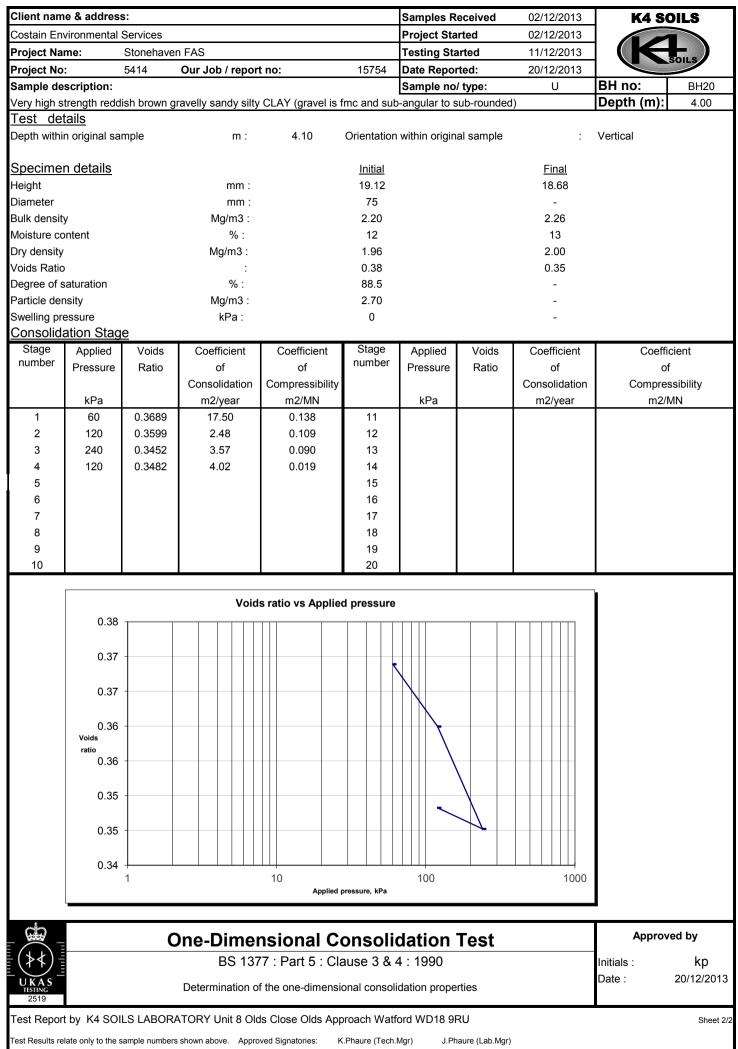

Checked and Approved	Agata K- Roche	
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT		

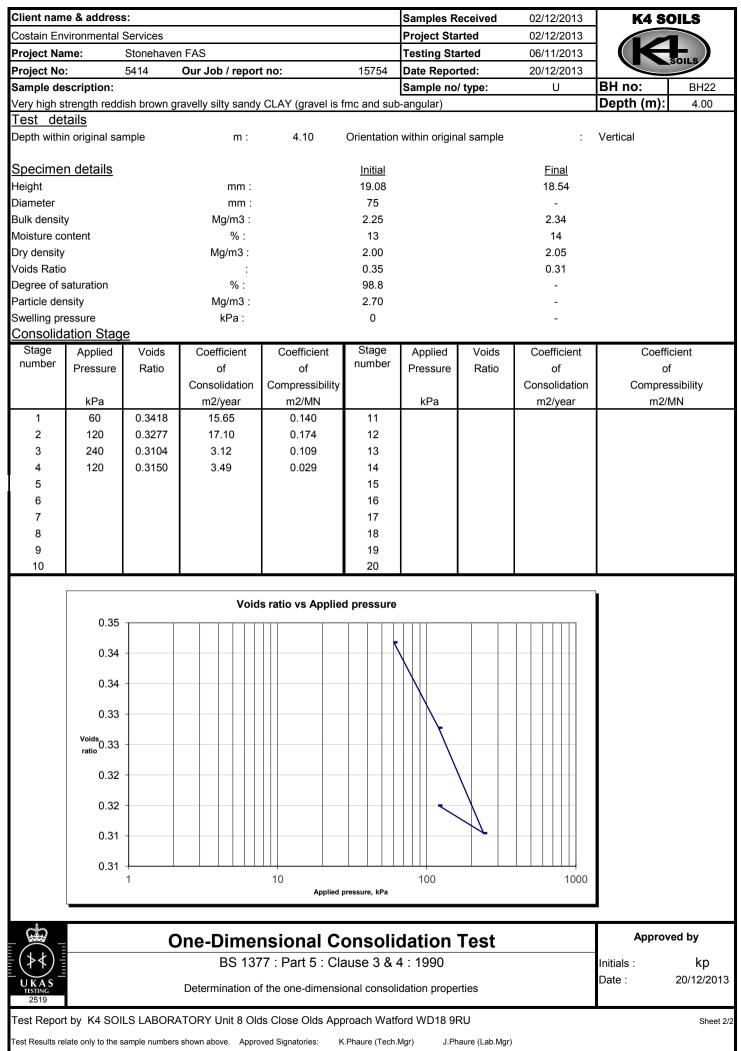
Environmental Services MOISTURE CONTENT/DRY DENSITY RELATIONSHIP

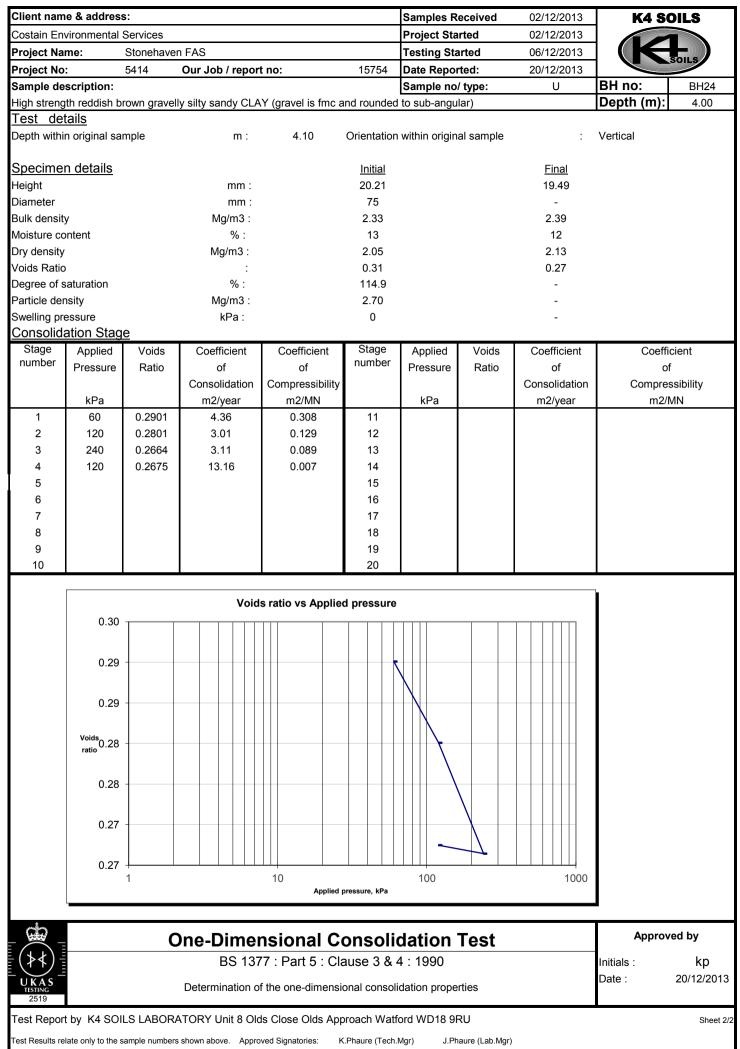
BS1377 : Part 4 : 199	90		
Client:	Aberdeenshire Council	Lab Sample No:	S8765
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	В
Sampla		Sample No:	17
Sample Description:	Greyish brown slightly gravelly very clayey SAND	Depth (m):	5.00 - 6.00
Description:		Date Tested:	28/11/2013

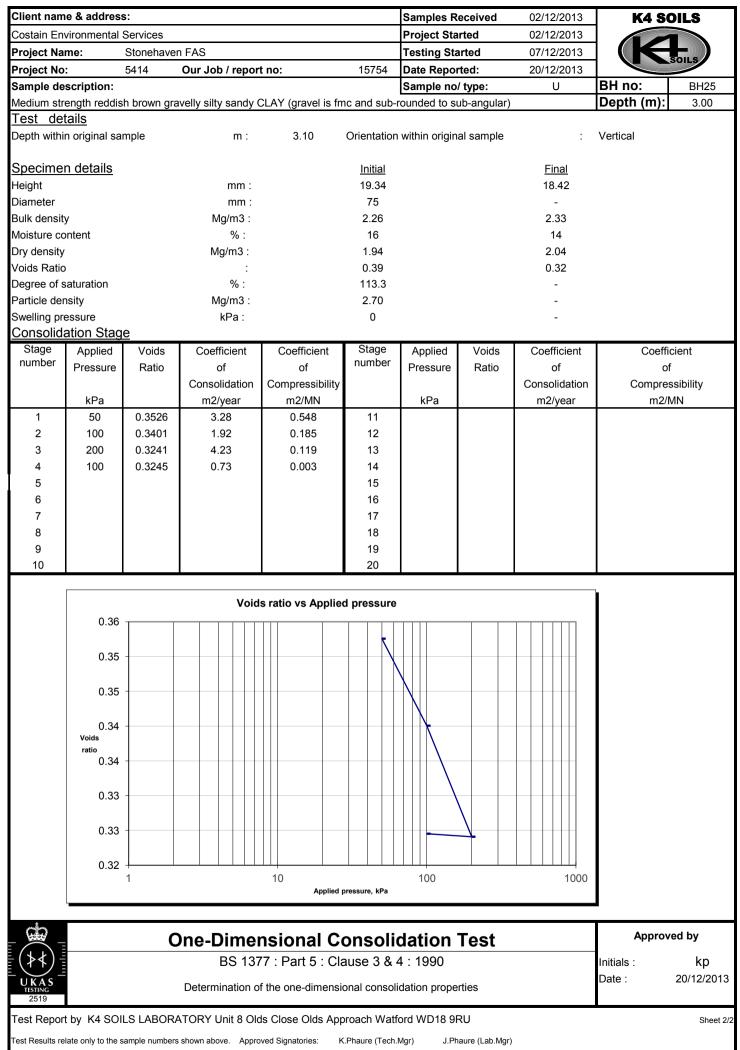

Moisture Content, %

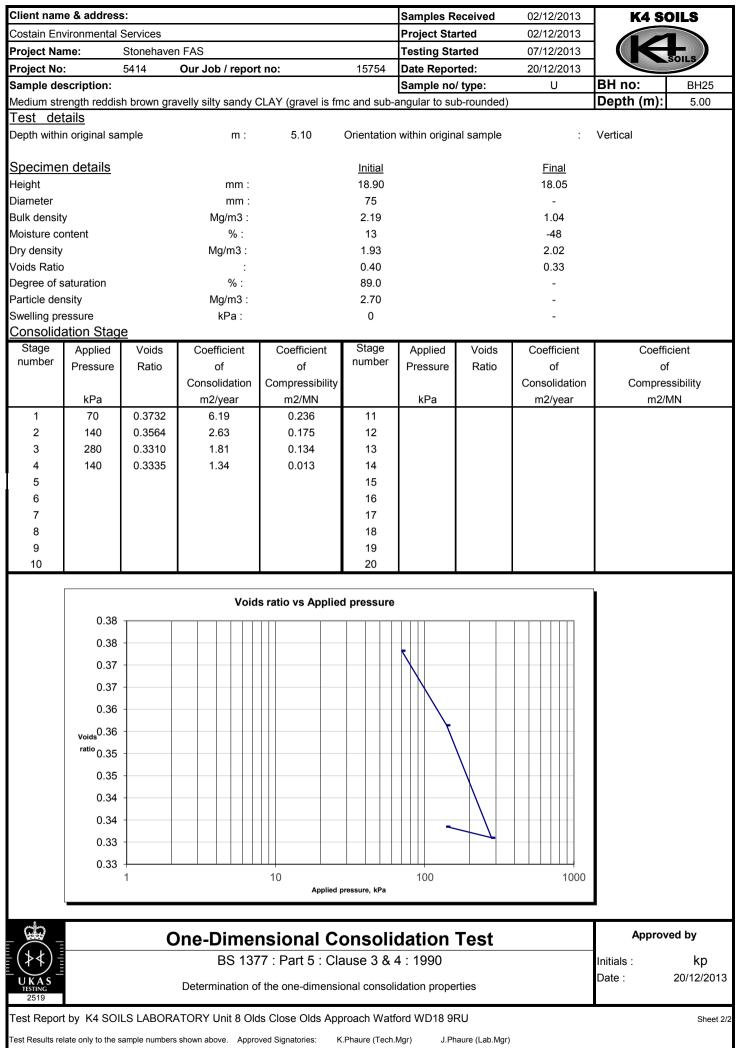

Preparation		AIR DRIED
Test Method		2.5 kg Rammer
Mould Type		STANDARD
Samples Used		SEPARATE SAMPLES
Mass Retained on 37.5 mm Sieve	%	0
Mass Retained on 20.0 mm Sieve	%	0
Particle Density - ASSUMED	Mg/m³	2.65
Maximum Dry Density	Mg/m³	1.89
Optimum Moisture Content	%	14

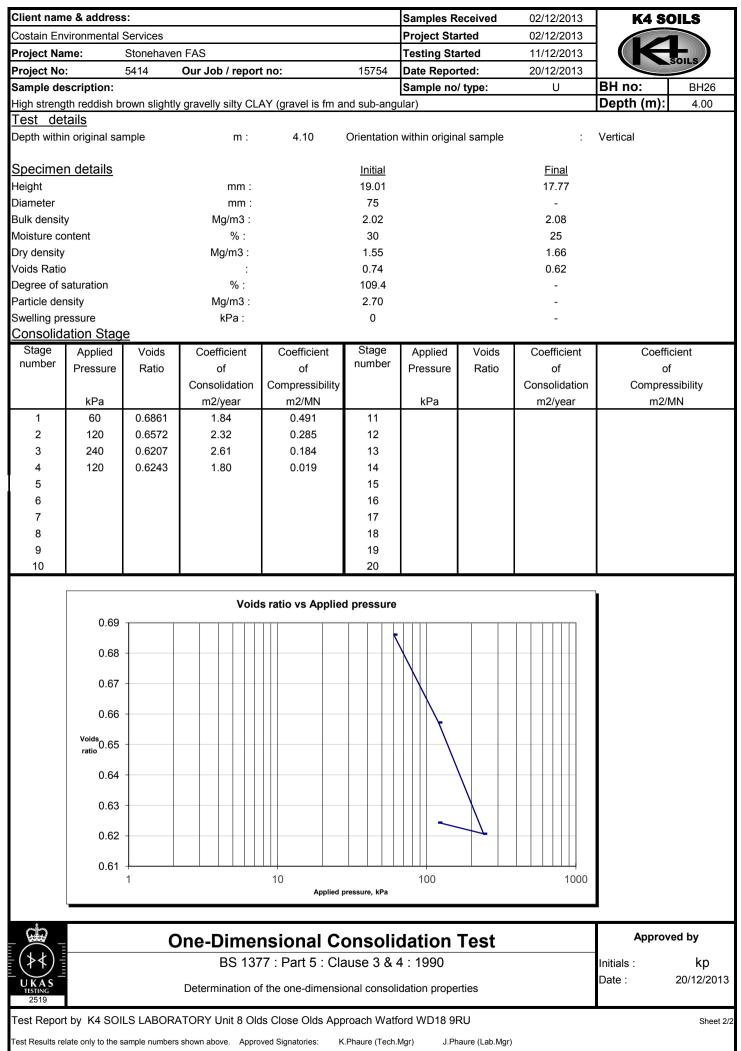

Remarks:

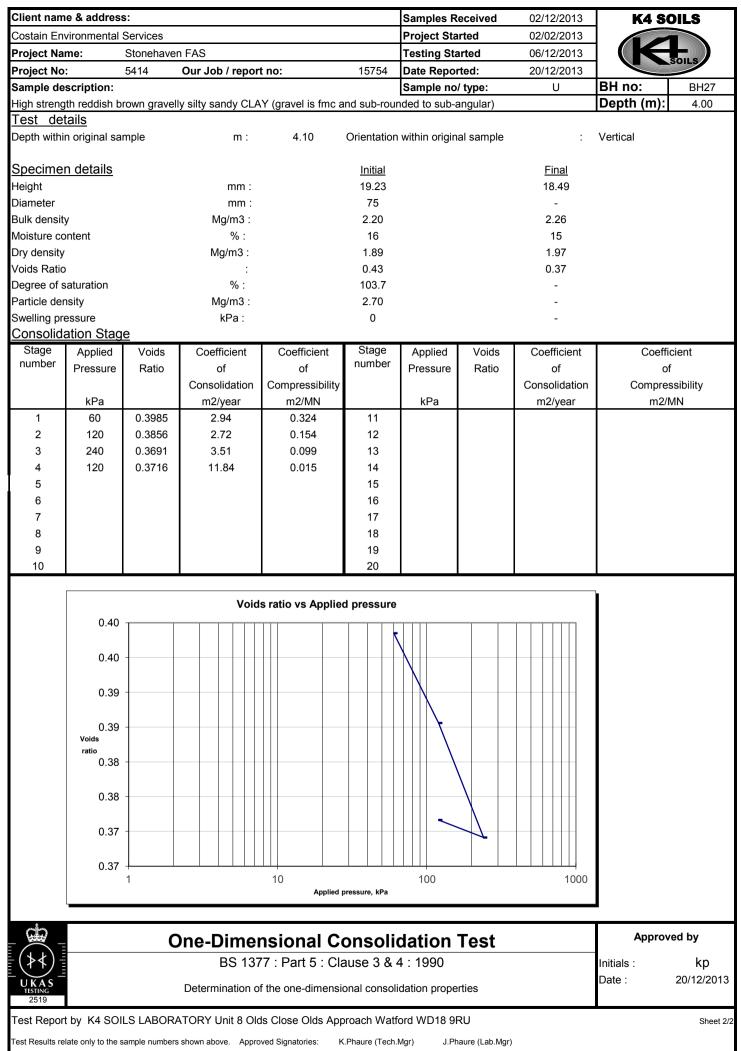

Checked and Approved	Agata K- Roche	
Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT		

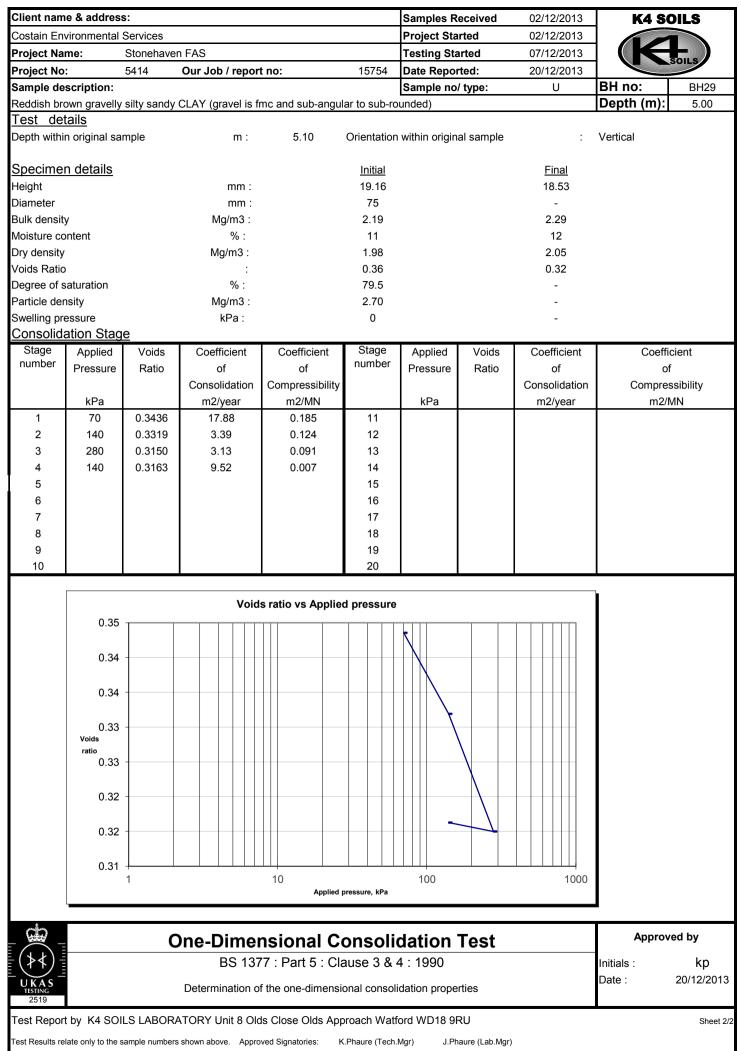


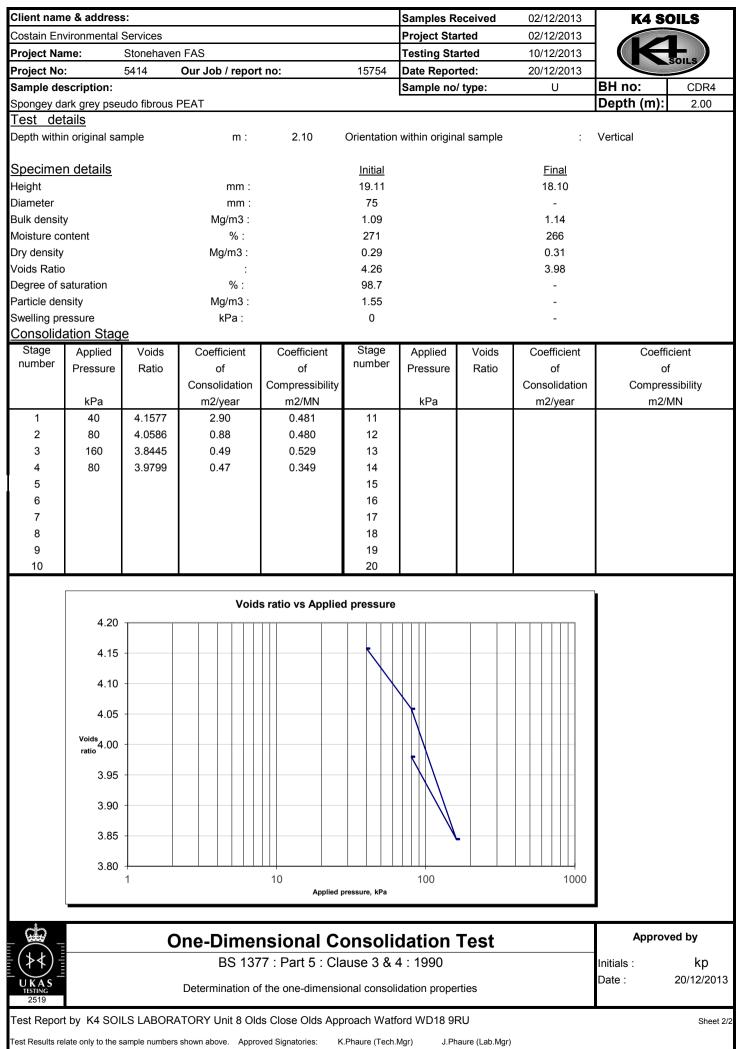












Client :			Costain Environmental Services		Our Job/repor	rt no:	15754	Samples Rec	: 02/12/20	13 Testing S	Started: 07	7/12/2013
Project r	name:		Stonehaven FAS		Project No:	541	4	Project Starte	d: -	Date repo)/12/2013
-	Sample no / ref	Sample depth (m)	Description	Moisture content (%)	Bulk Density (Mg/m3)	Dry density (Mg/m3)	Cell Pressure (kPa)	Strain at failure (%)	Max Deviator Stress (kPa)	Mode of failure	Shear Strength (kPa)	Phi (deg)
CDR4	U18	5.00	Very high strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-angular to sub-rounded)	10	2.34	2.13	150	13.9	556	Brittle	278	NA
BH1A	U20	6.00	High strength reddish brown gravelly sandy silty CLAY (gravel is fmc and rounded to sub-angular)	11	2.45	2.21	150	18.7	257	Brittle	129	NA
BH03	U16	5.00	Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-angular)	11	2.24	2.03	150	18.6	87	Brittle	44	NA
BH12	U12		Very high strength reddish brown slightly gravelly silty sandy CLAY with occasional pockets of red sand (gravel is fm and sub-angular)	16	2.16	1.86	100	11.6	579	Brittle	290	NA
BH20	U15	4.00	Very high strength reddish brown gravelly sandy silty CLAY (gravel is fmc and sub-angular to sub-rounded)	11	2.30	2.07	150	11.6	541	Brittle	271	NA
BH22	U12	4.00	Very high strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-angular)	10	2.29	2.09	150	16.2	540	Brittle	270	NA
BH24	U12	4.00	High strength reddish brown gravelly silty sandy CLAY (gravel is fmc and rounded to sub-angular)	9.2	2.43	2.22	150	19.2	213	Brittle	107	NA
BH25	U11	3.00	Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-angular)	17	2.38	2.02	100	20.2	89	Plastic	45	NA
BH26	U15	4.00	High strength reddish brown slightly gravelly silty CLAY (gravel is fm and sub-angular)	27	2.11	1.67	150	20.2	212	Brittle	106	NA
BH27	U14	4.00	High strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-angular)	16	2.31	2.00	150	20.2	168	Brittle	84	NA
K4 SC	oils		Summary of Undrained Tr	iaxial (Compress	ion Testir	ng				Checked approv	
			BS 1377 : Part	7 : Clause 8	: 1990					$- \smile -$	Initials	kp
	OILS		Results relate only to the sample numbers shown above. All samples connected with this report, incl any o	a de altales de la composición de	and and the second states			a di Barra da Cara da Martina.		U K A S TESTING		

K4 SOILS Report of Undrained Triaxial Compression Test BS 1377 : Part 7 : 1990 Clause 8.0 Stonehaven FAS Project name: Samples Received: 02/12/2013 Project Started: 02/12/2013 Client: Costain Environmental Services 07/12/2013 **Testing Started:** 20/12/2013 5414 15754 Date Reported: Project no: Our job /report no: BH / TP no: U20 BH1A Sample no: Depth (m): 6.00 Soil Description: High strength reddish brown gravelly sandy silty CLAY (gravel is fmc and rounded to sub-angular) Sample Details 1 Specimen Sample Condition Undisturbed Position and orientation within Height mm 198.0 the original sample Diameter mm 100.0 Moisture Content % 11 Bulk Density Mg/m³ 2.45 Dry Density Mg/m³ 2.21 **Test Details** Membrane Thickness mm 0.2 Membrane Correction kPa 0.73 Rate of Axial Displacement %/min 2.02 Cell Pressure kPa 150 Strain at Failure % Shear Strength 18.7 Parameters Maximum Deviator Stress kPa 257 Shear Strength kPa С 128 kPa 128 Mode of Failure Brittle Phi 0.0° Specimen 1 300 250 Deviator Stress - kPa 200 150 100 50 0

> 2 4 6 8 10 18 20 0 Strain - % 500 400 Shear Stress - kPa 300 200 100 0 100 200 300 700 1000 0 400 500 600 800 900 Normal Stress - kPa

12

14

16

-50

Fax:01923711311

Tel:01923711288

-mail: k4soils@aol.com

Approved Signatories: K.Phaure(Tech.Mgr) **K4 SOILS LABORATORY** Checked and Approved Unit 8, Olds Close, Watford, Herts, WD18 9RU. J.Phaure(Lab.Mgr) Initials: kp

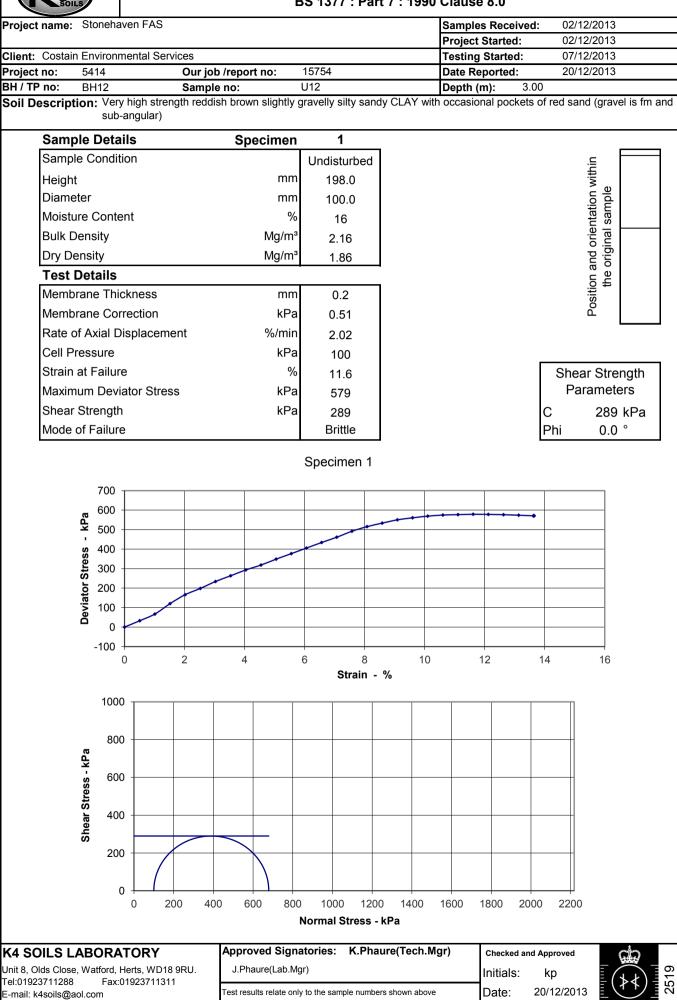
Test results relate only to the sample numbers shown above

Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request.

20/12/2013

MSF-11/R9 Sheet 2/2

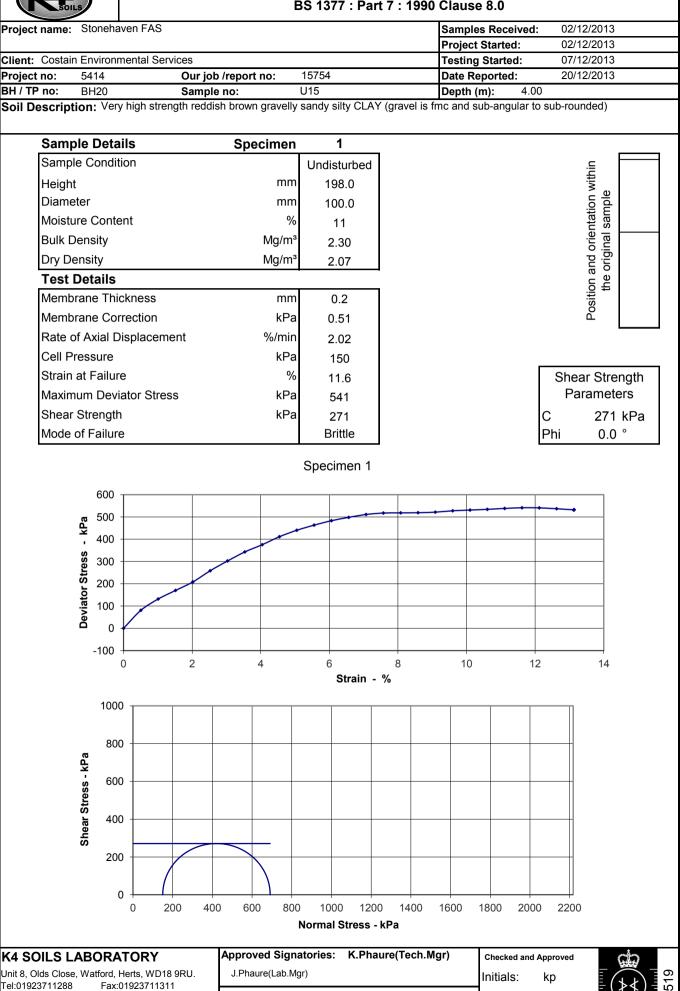
Date:


Report of Undrained Triaxial Compression Test

onehav	ven FAS				BS	1377 : F	art 7 :	1990 C	lause 8.	0		
oneha	ven FAS											
									amples Re			12/2013
<u> </u>									roject Sta			12/2013
	nental Servi		1	4	453				esting Sta			12/2013
14 103		Our job	-	t no:	157				ate Repor			12/2013
	ium strenat			gravelly			AY (grave					ular)
-	0			0)	,	,	(0				0	, , ,
			Spe	ecime	n	1						
onditi	on				U	ndisturbe	ed					ic
				mr	n	199.0						× vit
				mr	n	100.0						ion Alqr
Conte	nt			Q	6	10						san
sity				Mg/m	1 ³							nal
-												igir
					<u> </u>	2.00						on and orientation v the original sample
	kness			mr	n	0.2						Position and orientation within the original sample
												Pos
		n t										÷ [
	ispiaceme	JIT										
						18.6						ar Strength
Devia	ator Stress	5		kP	а	87					Pa	arameters
ength				kP	а	44					С	44 kPa
ailure	;					Brittle					Phi	0.0 °
80 - 70 - 60 - 50 - 30 - 20 - 10 - 0 -							· · · · · · · ·		• • • • •			
(5		1			15		20		25
250	'											
					1							
200	1											
150												
					1							
100												
					1							
50						_						
				17	1	A 1	1		1			
0				<u> </u>								
	103 : Medi Detai Conditi Contestity ity tails e Thick e Thick ails e Thick ails e Thick ails e Thick ails ails ails ailor ailor </td <td>103 Medium strengtl Details Condition Content sity tails e Thickness e Correction xial Displaceme sure Failure Deviator Stress ength Failure 100 90 0 70 0 60 0 70 0 100 0</td> <td>103 Sample Medium strength reddish Details condition Content sity ity tails e Thickness e Correction xial Displacement sure =ailure Deviator Stress ength =ailure 100 90 80 70 60 50 40 30 20 10 0</td> <td>103 Sample no: : Medium strength reddish brown Details Spectral condition Content sity ity tails e Thickness e Correction xial Displacement sure =ailure Deviator Stress ength -ailure 100 90 80 70 60 50 40 20 10 0 50 250 250 250 250 100</td> <td>Sample no: Medium strength reddish brown gravelly Details Specime Condition mr Content og sity Mg/m tails mr e Thickness mr e Correction kP Failure 9 Deviator Stress kP Failure 9 100 0 90 0 100 0 100 5</td> <td>IO3 Sample no: U10 : Medium strength reddish brown gravelly silty silty Image: Specimen condition U Details Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U content % Mg/m³ ity Mg/m³ Image: Specimen condition U content % Mg/m³ Image: Specimen condition ealler % Mg/m³ Image: Specimen condition sure kPa Specimen condition KPa Failure % Deviator Stress kPa Failure % Specimen condition Specimen condition 100 5 1 Image: Specimen condition 250 1 1 1 250 1 1 1 100 1 1 1</td> <td>IO3 Sample no: U16 : Medium strength reddish brown gravelly silty sandy CL/ Details Specimen 1 Condition Undisturbe 199.0 mm 100.0 Content % 10 sity Mg/m³ 2.24 ity Mg/m³ 2.03 tails 0.2 e Thickness mm 0.2 correction kPa sure kPa Failure % Deviator Stress kPa ength kPa failure 5 100 5 100 5 100 5 100 5</td> <td>Image: 103 Sample no: U16 : Medium strength reddish brown gravelly silty sandy CLAY (grave Details Specimen 1 Details Specimen 1 Condition Undisturbed 199.0 mm 100.0 10 Content % 10 sity Mg/m³ 2.24 tity Mg/m³ 2.03 tails 0.2 0.72 e Thickness mm 0.2 e Correction kPa 150 sure kPa 150 ailure %/min 2.01 sure kPa 44 Brittle Specimen 1</td> <td>Image: Note of the second s</td> <td>Io3 Sample no: U16 Depth (m): : Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-round sub-round) Image: Specimen 1 Details Specimen 1 iondition Image: Image</td> <td>103 Sample no: U16 Depth (m): 5.0 : Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to Details Specimen 1 Details Specimen 1 iondition Undisturbed 199.0 mm 100.0 content % ity Mg/m³ 2.24 ity Mg/m³ 2.03 sails 0.72 e Thickness mm 0.2 c Correction kPa alure % Bay and the set of the s</td> <td>Idia Sample no: U16 Depth (m): 5.00 Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-and td>	103 Medium strengtl Details Condition Content sity tails e Thickness e Correction xial Displaceme sure Failure Deviator Stress ength Failure 100 90 0 70 0 60 0 70 0 100 0	103 Sample Medium strength reddish Details condition Content sity ity tails e Thickness e Correction xial Displacement sure =ailure Deviator Stress ength =ailure 100 90 80 70 60 50 40 30 20 10 0	103 Sample no: : Medium strength reddish brown Details Spectral condition Content sity ity tails e Thickness e Correction xial Displacement sure =ailure Deviator Stress ength -ailure 100 90 80 70 60 50 40 20 10 0 50 250 250 250 250 100	Sample no: Medium strength reddish brown gravelly Details Specime Condition mr Content og sity Mg/m tails mr e Thickness mr e Correction kP Failure 9 Deviator Stress kP Failure 9 100 0 90 0 100 0 100 5	IO3 Sample no: U10 : Medium strength reddish brown gravelly silty silty Image: Specimen condition U Details Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U Content % Mg/m³ ity Mg/m³ Image: Specimen condition U content % Mg/m³ ity Mg/m³ Image: Specimen condition U content % Mg/m³ Image: Specimen condition ealler % Mg/m³ Image: Specimen condition sure kPa Specimen condition KPa Failure % Deviator Stress kPa Failure % Specimen condition Specimen condition 100 5 1 Image: Specimen condition 250 1 1 1 250 1 1 1 100 1 1 1	IO3 Sample no: U16 : Medium strength reddish brown gravelly silty sandy CL/ Details Specimen 1 Condition Undisturbe 199.0 mm 100.0 Content % 10 sity Mg/m³ 2.24 ity Mg/m³ 2.03 tails 0.2 e Thickness mm 0.2 correction kPa sure kPa Failure % Deviator Stress kPa ength kPa failure 5 100 5 100 5 100 5 100 5	Image: 103 Sample no: U16 : Medium strength reddish brown gravelly silty sandy CLAY (grave Details Specimen 1 Details Specimen 1 Condition Undisturbed 199.0 mm 100.0 10 Content % 10 sity Mg/m³ 2.24 tity Mg/m³ 2.03 tails 0.2 0.72 e Thickness mm 0.2 e Correction kPa 150 sure kPa 150 ailure %/min 2.01 sure kPa 44 Brittle Specimen 1	Image: Note of the second s	Io3 Sample no: U16 Depth (m): : Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-round sub-round) Image: Specimen 1 Details Specimen 1 iondition Image: Image	103 Sample no: U16 Depth (m): 5.0 : Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to Details Specimen 1 Details Specimen 1 iondition Undisturbed 199.0 mm 100.0 content % ity Mg/m³ 2.24 ity Mg/m³ 2.03 sails 0.72 e Thickness mm 0.2 c Correction kPa alure % Bay and the set of the s	Idia Sample no: U16 Depth (m): 5.00 Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-and

K4 SOILS LABORATORY	Approved Signatories:	K.Phaure(Tech.Mgr)	Checked a	nd Approved	GÍ D				
Unit 8, Olds Close, Watford, Herts, WD18 9RU. Tel:01923711288 Fax:01923711311	J.Phaure(Lab.Mgr)		Initials:	kp					
E-mail: k4soils@aol.com	Test results relate only to the sam	ple numbers shown above	Date:	20/12/2013	Se la companya de la				
All samples connected with this report, incl any on 'hold' will be dis	All samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2 UKAS								

Report of Undrained Triaxial Compression Test


BS 1377 : Part 7 : 1990 Clause 8.0

Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2

Report of Undrained Triaxial Compression Test

BS 1377 : Part 7 : 1990 Clause 8.0

-mail: k4soils@aol.com Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2

Test results relate only to the sample numbers shown above

20/12/2013

Date:

K4 SOILS	Report of l	Jndrained Tri	axial Compression	Test
	Е	S 1377 : Part 7	: 1990 Clause 8.0	
Project name: Stonehaven FAS			Samples Received:	02/12/2013
			Project Started:	02/12/2013
Client: Costain Environmental Services		45754	Testing Started:	07/12/2013
-	1 • • • • • • •	15754 U12	Date Reported: Depth (m): 4.00	20/12/2013
Soil Description: Very high strength re			/ /	
	0,1	, , , ,	Ū,	
Sample Details	Specimen	1		
Sample Condition		Undisturbed		. <u> </u>
Height	mm	198.0		, wit
Diameter	mm	100.0		ion Iple
Moisture Content	%	9.7		Position and orientation within the original sample
Bulk Density	Mg/m³	2.29		Drie
Dry Density	Mg/m³	2.09		nd o prigi
Test Details				bn a he c
Membrane Thickness	mm	0.2		sitic t
Membrane Correction	kPa	0.65		Ъ
Rate of Axial Displacement	%/min	2.02		
Cell Pressure	kPa	150		
Strain at Failure	%	16.2	Γ	Shear Strength
Maximum Deviator Stress	kPa	540		Parameters
Shear Strength	kPa	270		C 270 kPa
Mode of Failure		Brittle		Phi 0.0 °
			L	
		Specimen 1		
600	1	1		
w 500			• • • • • • • • • • • • • • • • • • •	
e l	A REAL PROPERTY AND A REAL			
400				
š 300				
⁵ 200				
000 Deviator Stress				
-100 0	5	10	15 20	25

Strain - % Shear Stress - kPa 0 -1000 1200 1600 1800 2000

Normal Stress - kPa

K4 SOILS LABORATORY	Approved Signatories:	K.Phaure(Tech.Mgr)	Checked a	nd Approved	â				
Unit 8, Olds Close, Watford, Herts, WD18 9RU. Tel:01923711288 Fax:01923711311	J.Phaure(Lab.Mgr)		Initials:	kp					
E-mail: k4soils@aol.com	Test results relate only to the sam	ple numbers shown above	Date:	20/12/2013					
All samples connected with this report, incl any on 'hold' will be dis	All samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2								

Report of Undrained Triaxial Compression Test

nt: Costa ject no: / TP no: I Descrip Sam Sam Heigh Diam Moist Bulk Dry D Test Mem Rate Cell F Strair Maxir Shea	in Envir 5414 BH2 ition: I ple De ble Cor nt eter ure Co Density Detai brane Co of Axia Pressu n at Fa mum D r Stren e of Fai 22 24 24 24 24 24 24 24 24 24	4 High strength etails ndition ontent y Is Correction al Displacen re ilure eviator Stre igth	Our job Sample reddish bro	own grave		15754 U12 sandy CL/ 198 100 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt Specim	rbed 0 0 3 2 4 2 5 6 6 6	I is fmc a	Project S Testing Date Rep Depth (n	Started: ported: n): 4.00 d to sub-ang	Ular) Losition and orientation within Possition and Steer Baram C 10	trength
iect no: / TP no: I Descrip Sam Sam Heigh Diam Moist Bulk Dry D Test Mem Rate Cell F Strair Maxir Shea	5414 BH2 btion: I ple Do ole Cornt eter ure Co Density Detai brane Co of Axia Pressu n at Fa mum D r Stren e of Fai	4 High strength etails ndition ontent y Is Thickness Correction al Displacen re ilure eviator Stre igth lure 50 50	Our job Sample reddish bro	e no: own grave	cimen mm mm Mg/m³ Mg/m³ Mg/min kPa %/min kPa %	U12 sandy CL/ Undistu 198. 100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	rbed 0 0 3 2 4 2 5 6 6 6	I is fmc a	Testing Date Rep Depth (n	Started: ported: n): 4.00 d to sub-ang	20/12/20 ular) ular) Shear St Param C 10	trength neters 07 kPa
/ TP no: I Descrip Sam Sam Heigh Diam Moist Bulk I Dry D Test MemI Rate Cell F Strair Maxir Shea	BH2 tion: I ple Do ple Cor nt eter ure Co Density Density Density Density Density Density rane Co of Axia Pressu n at Fa mum D r Stren e of Fai 22 24 24 24 24 24 24 24 24 24	4 etails ndition ontent y Is Thickness Correction al Displacen re ilure eviator Stre igth lure 50 50 50	Sample reddish bro	e no: own grave	cimen mm mm Mg/m³ Mg/m³ Mg/min kPa %/min kPa %	U12 sandy CL/ Undistu 198. 100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	rbed 0 0 3 2 4 2 5 6 6 6	I is fmc an	Depth (n	n): 4.00 d to sub-ang	ular) Ular) Dosition and orientation within Position and orientation Bhear St Param C 10	trength neters 07 kPa
I Descrip Sam Sam Heigh Diam Moist Bulk I Dry D Test Mem Rate Cell F Strair Maxir Shea	ple De ple Cor nt eter ure Co Density	High strength etails ndition ontent y Is Correction al Displacen re eviator Stre gth lure 50 50 50 50	nent	own grave	elly silty : cimen mm mm % Mg/m³ Mg/m³ Mg/m³ Mg/m3 kPa % kPa	1 Undistu 198. 100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.1 213 107 Britt	rbed 0 0 3 2 4 2 5 6 6 6	I is fmc a		d to sub-ang	Ular) Losition and orientation within Possition and Steep Baram C 10	trength neters 07 kPa
Sam Sam Heigh Diam Moist Bulk Dry D Test Mem Rate Cell F Strair Maxir Shea	ple Do ble Cor nt eter Density Density Density Density Drane of Axia Pressu n at Fa mum D r Stren e of Fai	etails ndition ontent y Is Thickness Correction al Displacen re ilure eviator Stre gth lure 50 50	nent	Spec	cimen mm % Mg/m³ Mg/m³ Mg/m³ kPa %/min kPa % kPa	1 Undistu 198 100 9.2 2.4 2.2 2.4 2.2 0.2 0.7 2.0 150 19.3 213 107 Britt	rbed 0 0 3 2 4 2 5 6 6 6				Position and orientation within By Baram	trength neters 07 kPa
Samp Heigh Diam Moist Bulk I Dry D Test Meml Rate Cell F Strair Maxir Shea	Dele Cor nt eter ure Co Density De	ndition ontent y Is Thickness Correction al Displacen re ilure eviator Stre gth lure			mm % Mg/m³ Mg/m³ kPa %/min kPa % kPa	Undistu 198. 100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	0 0 3 2 4 2 5 6 8 7 8 7 8 7 8 7 8				Shear St Param C 10	trength neters 07 kPa
Heigh Diam Moist Bulk Dry D Test Meml Rate Cell F Strair Maxir Shea	nt eter ure Co Density Density Density Density Density Drane of Axia Pressu n at Fa num D r Stren e of Fai	ontent y Is Thickness Correction al Displacen re ilure eviator Stre gth lure 50 50 50			mm Mg/m³ Mg/m³ Mg/m³ kPa %/min kPa %	198. 100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	0 0 3 2 4 2 5 6 8 7 8 7 8 7 8 7 8				Shear St Param C 10	trength neters 07 kPa
Diam Moist Bulk I Dry D Test MemI Rate Cell F Strair Maxir Shea	eter ure Co Density Density Detai brane of Axia Pressu n at Fa num D r Stren e of Fai	y Is Thickness Correction al Displacen re eviator Stre gth lure 50 50 50			mm Mg/m³ Mg/m³ Mg/m³ kPa %/min kPa %	100. 9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	0 3 2 4 2 2 3 4 2 3 4 6 6				Shear St Param C 10	trength neters 07 kPa
Moist Bulk I Dry D Test Memi Rate Cell F Strair Maxir Shea	Density Densit	y Is Thickness Correction al Displacen re eviator Stre gth lure 50 50 50			% Mg/m³ Mg/m³ kPa %/min kPa % kPa	9.2 2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	3 2 4 2 9 2 8 , e				Shear St Param C 10	trength neters 07 kPa
Bulk I Dry D Test Meml Rate Cell F Strain Maxin Shea	Density Density Detai brane of Axia Pressu n at Fa mum D r Stren e of Fai	y Is Thickness Correction al Displacen re eviator Stre gth lure 50 50 50			Mg/m³ Mg/m³ mm kPa %/min kPa % kPa	2.4: 2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	3 2 4 2 2 3 4 9 2 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				Shear St Param C 10	trength neters 07 kPa
Dry D Test Memi Rate Cell F Strair Maxir Shea	Density Detai brane c of Axia Pressu n at Fa mum D r Stren e of Fai	Is Thickness Correction al Displacent re ilure eviator Stre gth lure 50 50 50			Mg/m ³ mm kPa %/min kPa % kPa	2.2: 0.2 0.7 2.0: 150 19.: 213 107 Britt	2 4 2 3 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4				Shear St Param C 10	trength neters 07 kPa
Test Meml Meml Rate Cell F Strair Maxir Shea	Detai brane c of Axia Pressu n at Fa mum D r Stren e of Fai 22 22 24 24 21	Is Thickness Correction al Displacen re eviator Stre gth lure			mm kPa %/min kPa % kPa	0.2 0.7 2.0 150 19.3 213 107 Britt	4 2 2 3 4 e				Shear St Param C 10	trength neters 07 kPa
Meml Meml Rate Cell F Strair Maxir Shea	brane brane of Axia Pressu n at Fa mum D r Stren e of Fai 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thickness Correction al Displacen re ilure eviator Stre gth lure			kPa %/min kPa % kPa	0.2 0.7 2.0 150 19.3 213 107 Britt	4 2 2 3 4 e				Shear St Param C 10	trength neters 07 kPa
Meml Rate Cell F Strair Maxir Shea	brane (of Axia Pressu n at Fa mum D r Stren e of Fai 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	Correction al Displacen re ilure eviator Stre gth lure			kPa %/min kPa % kPa	0.74 2.02 150 19.2 213 107 Britt	4 2 2 2 6 6				Shear St Param C 10	trength neters 07 kPa
Rate Cell F Strair Maxir Shea	of Axia Pressu n at Fa num D r Stren e of Fai 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	al Displacen re ilure eviator Stre gth lure			%/min kPa % kPa	0.74 2.02 150 19.2 213 107 Britt	4 2 2 2 6 7 8				Shear St Param C 10	neters 07 kPa
Rate Cell F Strair Maxir Shea	of Axia Pressu n at Fa num D r Stren e of Fai 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	al Displacen re ilure eviator Stre gth lure			%/min kPa % kPa	2.0: 150 19.: 213 107 Britt	2 2 3 6 9				Param C 10	neters 07 kPa
Cell F Strair Maxir Shea	Pressu n at Fa mum D r Stren e of Fai 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	re ilure eviator Stre gth lure			kPa % kPa	150 19.3 213 107 Britt) 2 3 9 9				Param C 10	neters 07 kPa
Strair Maxir Shea	n at Fa mum D r Stren e of Fai 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ilure eviator Stre gth lure			% kPa	19.: 213 107 Britt	2 6 e				Param C 10	neters 07 kPa
Maxir Shea	num D r Stren e of Fai 2: 2: 2: 2: 2: 2: 2: 2: 2: 1:	eviator Stre			kPa	213 107 Britt	e				Param C 10	neters 07 kPa
Shea	r Stren e of Fai 2 2 e 2 2 2 2 2 2 2	100 50 50 50				107 Britt	, e				C 10	07 kPa
	2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	50 50				Britt	e					
NIUUE	2: ed y -	50								Ľ]
	Devia			5		10 St	rain - %	15		20		
		500										
		400										
	Ра											
	. K	300										
	res											
	Shear Stress - kPa	200										
	She											
		100		$ \rightarrow $								
		0										
		0	100 200	0 300) 500 Normal S	600 ress - kP	700 Pa	800	900 1000	0	
SOILS I				Approve	ad Signa	atories:	K Phaura	e(Tech M	ar) I	Chapterd	pproved	
SOILS L 8, Olds Clos					re(Lab.Mg		naure	o(10011.IVI	ייפ <i>ו</i>	Checked and A	proved	6.0

Date: 20/12/2013 Test results relate only to the sample numbers shown above E-mail: k4soils@aol.com All samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2

Report of Undrained Triaxial Compression Test BS 1377 : Part 7 : 1990 Clause 8.0 Project name: Stonehaven FAS 02/12/2013 Samples Received: Project Started: 02/12/2013 Client: Costain Environmental Services Testing Started: 07/12/2013 20/12/2013 Project no: 5414 Our job /report no: 15754 Date Reported: BH / TP no: BH25 U11 3.00 Sample no: Depth (m): Soil Description: Medium strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-angular) **Sample Details** 1 Specimen Sample Condition Undisturbed Position and orientation within Height mm 198.0 the original sample Diameter mm 100.0 Moisture Content % 17 Bulk Density Mg/m³ 2.38 Dry Density Mg/m³ 2.02 **Test Details** Membrane Thickness mm 0.2 Membrane Correction kPa 0.76 Rate of Axial Displacement %/min 2.02 Cell Pressure kPa 100 Strain at Failure % Shear Strength 20.2 Maximum Deviator Stress Parameters kPa 89 Shear Strength kPa 44 С 44 kPa Mode of Failure Plastic Phi 0.0° Specimen 1 100 90 Deviator Stress - kPa 80 70 60 50 40 30 20 10 0 -10 0 5 10 20 25 15 Strain - % 250 200 Shear Stress - kPa 150 100 50

> 350 200 250 300 Normal Stress - kPa

400

450

500

0 0

50

100

150

K4 SOILS LABORATORY	Approved Signatories:	K.Phaure(Tech.Mgr)	Checked a	nd Approved	<u>ci</u>
Unit 8, Olds Close, Watford, Herts, WD18 9RU. Tel:01923711288 Fax:01923711311	J.Phaure(Lab.Mgr)		Initials:	kp	
E-mail: k4soils@aol.com	Test results relate only to the same	Date:	20/12/2013	S5	
All samples connected with this report, incl any on 'hold' will be dis	posed off according to Company Polic	cy. A copy of this policy is available on req	uest. MSF	-11/R9 Sheet 2/2	U K A S TESTING

Diameter

200

Report of Undrained Triaxial Compression Test

BS 1377 : Part 7 : 1990 Clause 8.0

02/12/2013

02/12/2013

07/12/2013 20/12/2013

Position and orientation within

the original sample

Shear Strength Parameters

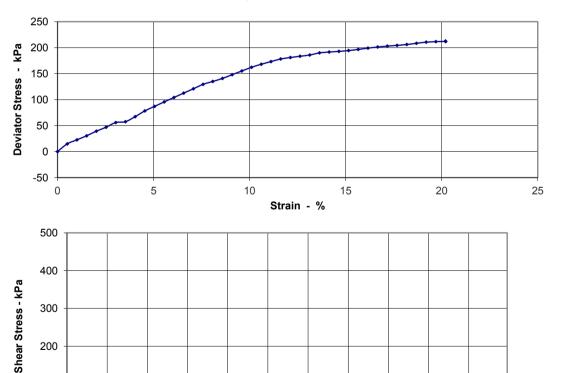
106 kPa

0.0°

С

Phi

4.00

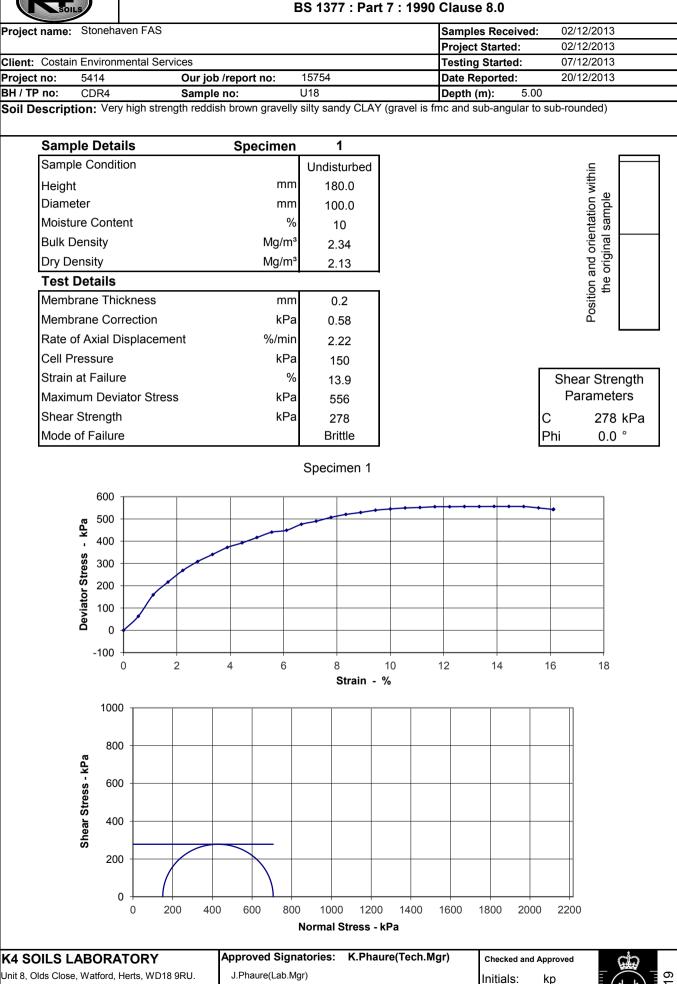

Stonehaven FAS Project name: Samples Received: Project Started: Testing Started: Client: Costain Environmental Services 5414 15754 Date Reported: Project no: Our job /report no: BH / TP no: BH26 U15 Sample no: Depth (m): Soil Description: High strength reddish brown slightly gravelly silty CLAY (gravel is fm and sub-angular) **Sample Details** 1 Specimen Sample Condition Undisturbed Height mm 198.0

mm

100.0

Moisture Content	%	27
Bulk Density	Mg/m³	2.11
Dry Density	Mg/m³	1.67
Test Details		
Membrane Thickness	mm	0.2
Membrane Correction	kPa	0.76
Rate of Axial Displacement	%/min	2.02
Cell Pressure	kPa	150
Strain at Failure	%	20.2
Maximum Deviator Stress	kPa	212
Shear Strength	kPa	106
Mode of Failure		Brittle

100 0 0 100 200 300 700 800 900 1000 400 500 600 Normal Stress - kPa Approved Signatories: K.Phaure(Tech.Mgr) **K4 SOILS LABORATORY** Checked and Approved Unit 8, Olds Close, Watford, Herts, WD18 9RU. J.Phaure(Lab.Mgr) 2519 Initials: kp Tel:01923711288 Fax:01923711311 20/12/2013 -mail: k4soils@aol.com Test results relate only to the sample numbers shown above Date: Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2


Report of Undrained Triaxial Compression Test

BS 1377 : Part 7 : 1990 Clause 8.0 Stonehaven FAS Project name: Samples Received: 02/12/2013 Project Started: 02/12/2013 Client: Costain Environmental Services 07/12/2013 **Testing Started:** 20/12/2013 5414 15754 Date Reported: Project no: Our job /report no: BH / TP no: U14 4.00 BH27 Sample no: Depth (m): Soil Description: High strength reddish brown gravelly silty sandy CLAY (gravel is fmc and sub-rounded to sub-angular) Sample Details 1 Specimen Sample Condition Undisturbed Position and orientation within Height mm 198.0 the original sample Diameter mm 100.0 Moisture Content % 15 Bulk Density Mg/m³ 2.31 Dry Density Mg/m³ 2.00 **Test Details** Membrane Thickness mm 0.2 Membrane Correction kPa 0.76 Rate of Axial Displacement %/min 2.02 Cell Pressure kPa 150 Strain at Failure Shear Strength % 20.2 Parameters Maximum Deviator Stress kPa 168 Shear Strength kPa С 84 kPa 84 Mode of Failure Brittle Phi 0.0° Specimen 1 180 160 kРа 140 • 120 **Deviator Stress** 100 80 60 40 20 0 -20 5 10 20 25 0 15 Strain - % 500 400 Shear Stress - kPa 300 200 100 0 100 200 300 700 900 1000 0 400 500 600 800 Normal Stress - kPa

Approved Signatories: K.Phaure(Tech.Mgr) **K4 SOILS LABORATORY** Checked and Approved Unit 8, Olds Close, Watford, Herts, WD18 9RU. J.Phaure(Lab.Mgr) Initials: ດ kp Fax:01923711311 Tel:01923711288 20/12/2013 -mail: k4soils@aol.com Test results relate only to the sample numbers shown above Date: Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2

Report of Undrained Triaxial Compression Test

BS 1377 : Part 7 : 1990 Clause 8.0

-mail: k4soils@aol.com Il samples connected with this report, incl any on 'hold' will be disposed off according to Company Policy. A copy of this policy is available on request. MSF-11/R9 Sheet 2/2

Test results relate only to the sample numbers shown above

20

20/12/2013

Date:

Fax:01923711311

Tel:01923711288

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8804
Contract No:	5414	Hole ID:	BH12
Contract Name:	Stonehaven FAS	Sample Type:	С
Samula		Sample No:	24
Sample	Reddish brown SANDSTONE	Depth (m):	9.65 - 9.80
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		73.87	0.14	5457	73.87	0.03	1.192	0.03058
AXIAL	73.91	64.54	0.11	6071	77.92	0.02	1.221	0.02112
AXIAL	73.74	66.37	0.16	6229	78.92	0.03	1.228	0.03154
AXIAL	73.84	43.83	0.12	4119	64.18	0.03	1.119	0.03124

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8812
Contract No:	5414	Hole ID:	BH13
Contract Name:	Stonehaven FAS	Sample Type:	С
Samula		Sample No:	-
Sample	Reddish brown SANDSTONE	Depth (m):	9.00 - 9.53
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		69.49	11.05	4829	69.49	2.29	1.160	2.65367
DIA		69.14	12.80	4780	69.14	2.68	1.157	3.09808
DIA		69.32	11.24	4805	69.32	2.34	1.158	2.70836
DIA		69.21	12.95	4790	69.21	2.70	1.158	3.12948
DIA		69.19	14.70	4787	69.19	3.07	1.157	3.55397
AXIAL	69.42	65.06	3.23	5748	75.82	0.56	1.206	0.67663

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

POINT LOAD

ISRM SUGGESTED METHODS ON TESTING METHODS - 1985									
Client:	Aberdeenshire Council	Lab Sample No:	S8812						
Contract No:	5414	Hole ID:	BH13						
Contract Name:	Stonehaven FAS	Sample Type:	С						
Samula		Sample No:	-						
Sample	Reddish brown SANDSTONE	Depth (m):	9.00 - 9.53						
Description:		Date Tested:	25/11/2013						

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
AXIAL	69.48	53.59	7.20	4739	68.84	1.52	1.155	1.75447

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

POINT LOAD	

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8818
Contract No:	5414	Hole ID:	BH14
Contract Name:	Stonehaven FAS	Sample Type:	С
Samula		Sample No:	16
Sample	Grey SANDSTONE	Depth (m):	7.00 - 7.50
Description:	-	Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		83.17	11.55	6917	83.17	1.67	1.257	2.09850
DIA		83.18	12.74	6919	83.18	1.84	1.257	2.31437
DIA		83.48	16.88	6969	83.48	2.42	1.259	3.04968
DIA		83.45	14.70	6964	83.45	2.11	1.259	2.65719
DIA		83.9	14.61	7039	83.90	2.08	1.262	2.61989
AXIAL	83.84	81.2	9.35	8664	93.08	1.08	1.323	1.42657

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

POINT LOAD	
ISRM SUGGESTED METHODS ON TESTING METHODS	5 - 1985

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985				
Client:	Aberdeenshire Council	Lab Sample No:	S	8818	
Contract No:	5414	Hole ID:	В	H14	
Contract Name:	Stonehaven FAS	Sample Type:		С	
Sample		Sample No:		16	
Description:	Grey SANDSTONE	Depth (m):	7.00	-	7.50
Description:		Date Tested:	25/1	1/201	13

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
AXIAL	83.45	75.85	14.36	8056	89.75	1.78	1.301	2.31941
AXIAL	83.35	67.42	6.50	7152	84.57	0.91	1.267	1.15043
AXIAL	83.24	57.21	11.00	6061	77.85	1.81	1.220	2.21507

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

POINT LOAD

ISRM SUGGESTED METHODS ON TESTING METHODS - 1985								
Client:	Aberdeenshire Council	Lab Sample No:	S8821					
Contract No:	5414	Hole ID:	BH15					
Contract Name:	Stonehaven FAS	Sample Type:	С					
Samala		Sample No:	-					
Sample	Reddish brown SANDSTONE	Depth (m):	12.15 - 12.40					
Description:		Date Tested:	25/11/2013					

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.54	4.49	5262	72.54	0.85	1.182	1.00882
DIA		72.47	5.77	5252	72.47	1.10	1.182	1.29723
DIA		72.69	0.90	5284	72.69	0.17	1.183	0.20157
AXIAL	72.62	64.6	2.00	5971	77.27	0.33	1.216	0.40643
AXIAL	72.54	61.07	1.44	5638	75.09	0.26	1.201	0.30668

Test results relate only to the sample number shown above.

Remarks:

Checked andAgata K-ApprovedRoche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985				
Client:	Aberdeenshire Council	Lab Sample No:	S8851		
Contract No:	5414	Hole ID:	BH20		
Contract Name:	Stonehaven FAS	Sample Type:	С		
Samula		Sample No:	27		
Sample	Reddish brown SANDSTONE	Depth (m):	7.76 - 7.93		
Description:		Date Tested:	25/11/2013		

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.21	1.20	5214	72.21	0.23	1.180	0.27040
DIA		72.35	2.26	5235	72.35	0.43	1.181	0.50872
DIA		72.41	0.55	5243	72.41	0.10	1.181	0.12279
AXIAL	72.25	54.75	0.96	5035	70.95	0.19	1.171	0.22205

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only one Axial possible.

Checked andAgata K-ApprovedRoche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

POINT LOAD					
ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985				
Client:	Aberdeenshire Council	Lab Sample No:	S8852		
Contract No:	5414	Hole ID:	BH20		
Contract Name:	Stonehaven FAS	Sample Type:	С		
Samala		Sample No:	29		
Sample	Reddish brown and greyish brown SANDSTONE	Depth (m):	9.14 - 9.55		
Description:		Date Tested:	25/11/2013		

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.58	2.99	5268	72.58	0.57	1.183	0.67010
DIA		72.67	3.20	5281	72.67	0.61	1.183	0.71699
DIA		72.74	2.98	5291	72.74	0.56	1.184	0.66670
DIA		72.55	5.75	5264	72.55	1.09	1.182	1.29052
DIA		72.82	2.03	5303	72.82	0.38	1.184	0.45339
AXIAL	72.49	71.85	3.32	6629	81.42	0.50	1.245	0.62277

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only one Axial possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8906
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Greyish brown SANDSTONE	Depth (m):	7.50 - 7.92
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.77	17.18	5295	72.77	3.24	1.184	3.84003
DIA		72.62	20.90	5274	72.62	3.96	1.183	4.68672
DIA		72.49	23.01	5255	72.49	4.38	1.182	5.17434
DIA		72.73	19.74	5290	72.73	3.73	1.184	4.41728
DIA		72.95	23.72	5322	72.95	4.46	1.185	5.28199
DIA		72.84	23.39	5306	72.84	4.41	1.184	5.22180

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only three Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8906
Contract No:	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	С
Samula		Sample No:	-
Sample	Greyish brown SANDSTONE	Depth (m):	7.50 - 7.92
Description:	-	Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
AXIAL	72.01	58.07	11.70	5322	72.95	2.20	1.185	2.60466
AXIAL	72.61	57.71	12.53	5333	73.03	2.35	1.186	2.78614
AXIAL	72.5	46.8	10.17	4318	65.71	2.36	1.131	2.66325

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only three Axials possible.

Checked andAgata K-ApprovedRoche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

POINT LOAD

Client:	Aberdeenshire Council	Lab Sample No:	S8898
	5414	Hole ID:	BH26
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Brown SANDSTONE	Depth (m):	11.16 - 11.50
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		73	24.45	5329	73.00	4.59	1.186	5.43880
DIA		73.05	27.13	5336	73.05	5.08	1.186	6.02979
DIA		72.69	19.74	5284	72.69	3.74	1.183	4.42104
DIA		72.94	22.07	5320	72.94	4.15	1.185	4.91553
AXIAL	72.47	52.14	18.15	4809	69.35	3.77	1.159	4.37140
AXIAL	72.72	63.44	19.18	5872	76.63	3.27	1.212	3.95745

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8909
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Reddish brown SANDSTONE	Depth (m):	10.28 - 10.38
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		71.86	4.97	5164	71.86	0.96	1.177	1.13309
AXIAL	71.39	45.9	1.32	4170	64.58	0.32	1.122	0.35514

Test results relate only to the sample number shown above.

Remarks:

Checked and	Agata K-
Approved	Roche

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8910
Contract No:	5414	Hole ID:	BH27
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Reddish brown SANDSTONE	Depth (m):	11.30 - 11.50
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.28	9.00	5224	72.28	1.72	1.180	2.03229
DIA		72.35	15.59	5235	72.35	2.98	1.181	3.51706
DIA		72.55	17.03	5264	72.55	3.23	1.182	3.82439
AXIAL	72.09	54.64	6.15	5013	70.80	1.23	1.169	1.43465
AXIAL	72.19	53.28	10.91	4895	69.97	2.23	1.163	2.59246

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

Date: 09/12/2013

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8750
Contract No:	5414	Hole ID:	BH5
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Greyish brown SANDSTONE	Depth (m):	13.08 - 13.30
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		73.63	0.36	5421	73.63	0.07	1.190	0.07904
DIA		73.82	0.31	5449	73.82	0.06	1.192	0.06779
DIA		73.71	0.37	5433	73.71	0.07	1.191	0.08110
AXIAL	73.61	64.69	0.30	6061	77.85	0.05	1.220	0.05941
AXIAL	73.84	48.27	0.12	4536	67.35	0.03	1.143	0.03025
AXIAL	73.67	52.98	0.17	4968	70.48	0.03	1.167	0.03994

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8767
Contract No:	5414	Hole ID:	BH6
Contract Name:	Stonehaven FAS	Sample Type:	С
Samula		Sample No:	-
Sample	Greyish brown SANDSTONE	Depth (m):	9.39 - 9.67
Description:	-	Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		73.19	0.12	5357	73.19	0.02	1.187	0.02659
AXIAL	73.09	62.8	0.07	5842	76.43	0.01	1.210	0.01347
AXIAL	73.21	63.1	0.11	5879	76.68	0.02	1.212	0.02165

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

POINT LOAD			
ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8773
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	С
Somalo		Sample No:	-
Sample	Dark brown and yellowish brown SANDSTONE	Depth (m):	7.75 - 8.00
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.23	1.12	5217	72.23	0.21	1.180	0.25332
DIA		72.24	1.91	5219	72.24	0.37	1.180	0.43078
DIA		72.48	1.68	5253	72.48	0.32	1.182	0.37795
DIA		72.39	1.40	5240	72.39	0.27	1.181	0.31444
AXIAL	72.36	54.82	1.05	5049	71.05	0.21	1.171	0.24245
AXIAL	72.14	55.44	1.16	5090	71.35	0.23	1.173	0.26743

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

POINT LOAD			
ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8773
Contract No:	5414	Hole ID:	BH7
Contract Name:	Stonehaven FAS	Sample Type:	С
Somula		Sample No:	-
Sample	Dark brown and yellowish brown SANDSTONE	Depth (m):	7.75 - 8.00
Description:	-	Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
AXIAL	71.75	56.55	0.96	5164	71.86	0.19	1.177	0.21886
AXIAL	72.51	44.62	0.96	4118	64.17	0.23	1.119	0.26084

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

POINT LOAD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8780
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	С
Sample		Sample No:	-
	Reddish brown SANDSTONE	Depth (m):	5.86 - 6.00
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		71.64	7.30	5132	71.64	1.42	1.176	1.67108
AXIAL	71.59	58.08	6.79	5292	72.75	1.28	1.184	1.51891
AXIAL	71.5	67.9	7.50	6179	78.61	1.21	1.226	1.48689

Test results relate only to the sample number shown above.

Remarks:

Checked and Agata K-Approved Roche

POINT LOAD
ISBM SUCCESTED METHODS ON TESTING METHOD

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8781
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	С
Sampla		Sample No:	-
Sample Description:	Grey SANDSTONE	Depth (m):	8.19 - 8.65
Description:		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
DIA		72.77	11.34	5295	72.77	2.14	1.184	2.53542
DIA		72.63	11.67	5275	72.63	2.21	1.183	2.61700
DIA		72.85	15.86	5307	72.85	2.99	1.185	3.53953
DIA		72.74	21.38	5291	72.74	4.04	1.184	4.78324
DIA		72.81	17.06	5301	72.81	3.22	1.184	3.80995
DIA		72.67	10.83	5281	72.67	2.05	1.183	2.42544

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Sheet 1 of 1

Date: 09/12/2013

POINT LOAD
IODM OUROCEOTED METHODO ON TEOTINO N

ISRM SUGGESTED	METHODS ON TESTING METHODS - 1985		
Client:	Aberdeenshire Council	Lab Sample No:	S8781
Contract No:	5414	Hole ID:	Bh8
Contract Name:	Stonehaven FAS	Sample Type:	С
Sampla		Sample No:	-
Sample Description:	Grey SANDSTONE	Depth (m):	8.19 - 8.65
Description.		Date Tested:	25/11/2013

Test Type	W (mm)	D(mm)	P(kN)	De² (mm²)	De (mm)	ls (Mpa)	F	ls50 (Mpa)
AXIAL	72.69	56.6	9.37	5236	72.36	1.79	1.181	2.11215
AXIAL	72.74	68.48	12.56	6340	79.62	1.98	1.233	2.44160

Test results relate only to the sample number shown above.

Remarks: Sample broke predominantly longitudinally. Only two Axials possible.

Checked and Agata K-Approved Roche

Unit 10 Wessex Road Bourne end Buckinghamshire SL8 5DT

Date: 09/12/2013

SAMPLE RESTRICTION

то:	Andy Paice & Mike Bridgman	FROM:	Nick Worthington-Williams									
CONTRACT NAME:	STONEHAVEN RIVER CARRON AND BURN OF GL	TONEHAVEN RIVER CARRON AND BURN OF GLASLAW FLOOD PROTECTION SCHEME										
CONTRACT NUMBER:	5414	DATE:	29/11/2013									

Your samples and work order have been received and testing will commence in accordance with your test schedule or in the absence of clear instructions, in accordance with Costain Laboratory's standard testing conditions and procedures with particular reference to load cell pressures.

The following samples are unsuitable for testing as detailed below. Could you please complete what "Required Action" you wish us to take in the box below. ALTERNATIVE FORMS OF NOTIFICATION OF REQUIREMENTS WILL NOT BE ACCEPTED BY THE LABORATORY

Hole Id	Sample No		Sample		TEST CODE	Reason for Restriction 1= Samples not Received, 2= Schedule unreadable, 3=Logs not provided,4=Insufficient Sample,5=Others-	Required Action (Client / Engineer)
		Dept	h (m)	Туре	CODE	please specify	
CDR1	S8689	1.20	2.00	B5	OMC	4 - Insufficient for OMC - whole sample used for PSD	Cancel Test
CDR3	S8702	4.00	4.50	B14	OMC	4 - Insufficient for OMC even when combined with D13 & D15	Cancel Test
BH1A	S8714	2.00	2.45	D6	PSD/N MC	4 - 1 piece of gravel, unsuitable for both tests	Cancel Test
BH9	S8784	2.00	2.40	B7	OMC	4 - Sandy GRAVEL - insufficient for test and whole of B5 used for other testing	Cancel Test
BH12	S8797	1.50	1.80	B7	OMC / NMC	4 - Insufficient for OMC. B4 all used for PSD. If NMC required it is possible, please advise.	Cancel Test
BH15	S8822	2.00	2.45	D6	NMC	4- Insufficient for both tests, sample sent for chemical analysis. NMC on B5 possible if required.	Cancel Test
BH19	S8838	2	2.8	B8	OMC	4 - Sandy GRAVEL - insufficient for test and whole of B5 used for other testing	Cancel Test
BH21B	S8856	3	3.3	B10	OMC	4 - Insufficient for test and B8 all used for other testing.	Cancel Test
BH29	S8927	2	2.5	B7	OMC	4 - Insufficient for test and B5 all used for other testing.	Cancel Test
			-		_		
CDR1	S8690	2	3	B7	Perm	4 - Whole sample used for PSD	Cancel Test
CDR3	S8701	3	3.5	B12	Perm	4 - Whole sample used for PSD	Cancel Test
CDR4	S8712	3	3.5	B14	Perm	4 - Whole sample used for PSD	Cancel Test
BH2	S8725	3	4	B12	Perm	4 - Whole sample used for PSD	Cancel Test
BH3	S8733	4	4.7	B13	Perm	4 - Whole sample used for PSD	Cancel Test
BH4	S8740	1.9	3	B6	Perm	4 - Whole sample used for OMC	Cancel Test
BH4	S8742	3.2	5	B9	Perm	4 - Whole sample used for PSD	Cancel Test
BH5	S8755	5	5.5	B12	Perm	4 - Whole sample used for PSD	Cancel Test
BH9	S8782	1.2	2	B5	Perm	4 - Whole sample used for PSD	Cancel Test

Agata Krzak-Roche Costain Group PLC Coastin Geotechnical Services Div. Unit 10 Wessex Road Ind. Est. Wessex Road Bourne End Buckinghamshire SL8 5DT

t: 01628 648036

e: agata.krzakroche@costain.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 13-48637

Project / Site name:	Stonehaven FAS	Samples received on:	28/11/2013
Your job number:	5414	Samples instructed on:	28/11/2013
Your order number:	T2347A	Analysis completed by:	04/12/2013
Report Issue Number:	1	Report issued on:	04/12/2013
Samples Analysed:	35 soil samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Lab Sample Number				300848	300849	300850	300851	300852
Sample Reference				CDR1	CDR1	CDR2	CDR3	CDR3
Sample Number				D6	B9	B6	D5	D8
Depth (m)	2.00-2.45	3.00-4.00	1.00-1.50	1.20-1.65	2.00-2.45			
Date Sampled				23/10/2013	23/10/2013	04/11/2013	31/10/2013	31/10/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	16	43	8.3	28	52
Total mass of sample received	kg	0.001	NONE	0.30	0.36	0.55	0.57	0.54

pН	pH Units	N/A	MCERTS	-	-	8.3	6.0	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.10	-	-	-	-
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	100	-	-	-	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.050	-	-	-	-
Organic Matter	%	0.1	MCERTS	-	7.9	-	-	8.9

Lab Sample Number				300853	300854	300855	300856	300857
Sample Reference				CDR3	CDR3	CDR3	CDR4	CDR4
Sample Number				B12	D15	D19	D3	B4
Depth (m)				3.00-3.50	5.00-5.45	6.50-6.80	0.60	0.60-0.80
Date Sampled				31/10/2013	31/10/2013	31/10/2013	29/10/2013	29/10/2013
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	40	12	11	16	17
Total mass of sample received	kg	0.001	NONE	0.45	0.56	0.64	1.9	0.48

pН	pH Units	N/A	MCERTS	-	7.0	-	7.2	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	-	-	0.027	-	0.034
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	-	-	27	-	34
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	-	0.014	-	0.017
Organic Matter	%	0.1	MCERTS	5.5	-	-	-	-

Lab Sample Number				300858	300859	300860	300861	300862
Sample Reference				CDR4	BH1A	BH1A	BH1A	BH2
Sample Number				D7	B5	D11	B17	B6
Depth (m)				1.20-1.65	1.20-2.00	3.30	5.10-5.60	0.80-1.00
Date Sampled				29/10/2013	06/11/2013	06/11/2013	06/11/2013	26/10/2013
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	9.7	46	44	10
Total mass of sample received	kg	0.001	NONE	0.35	0.49	0.52	0.40	0.82

рН	pH Units	N/A	MCERTS	-	7.0	-	-	7.4
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.043	-	-	-	0.076
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	43	-	-	-	76
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.022	-	-	-	0.038
Organic Matter	%	0.1	MCERTS	-	-	15	6.7	-

Lab Sample Number				300863	300864	300865	300866	300867
Sample Reference				BH3	BH4	BH4	BH5	BH6
Sample Number				D9	D5	D8	D7	D4
Depth (m)				2.70	2.00-2.45	3.00-3.20	3.30-3.45	1.20-1.65
Date Sampled				01/11/2013	22/10/2013	22/10/2013	07/11/2013	05/11/2013
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	57	16	55	39	4.5
Total mass of sample received	kg	0.001	NONE	0.95	0.44	0.41	0.86	0.53

pН	pH Units	N/A	MCERTS	-	3.9	-	-	6.3
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	-	2.2	-	-	0.024
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	-	2200	-	-	24
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	-	1.1	-	-	0.012
Organic Matter	%	0.1	MCERTS	12	-	17	8.1	-

Lab Sample Number				300868	300869	300870	300871	300872
Sample Reference				BH8	BH9	BH10	BH11A	BH13
Sample Number				D8	D6	B5	D5	D4
Depth (m)				2.00-2.45	2.00-2.45	2.00-2.50	1.20-1.65	2.00-2.45
Date Sampled						28/10/2013	22/10/2013	18/10/2013
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	5.5	8.0	9.6	16	6.2
Total mass of sample received	kg	0.001	NONE	0.52	0.56	0.86	0.42	0.40

pH	pH Units	N/A	MCERTS	6.5	-	6.4	6.5	6.9
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.016	0.016	0.037	0.028	0.076
Water Soluble Sulphate as SO_4 (2:1)	mg/kg	2.5	MCERTS	16	16	37	28	76
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0078	0.0081	0.018	0.014	0.038
Organic Matter	%	0.1	MCERTS	-	-	-	-	-

Lab Sample Number				300873	300874	300875	300876	300877
Sample Reference				BH14	BH15	BH18	BH18	BH19
Sample Number				B3	D6	D6	B5	D9
Depth (m)				1.20-2.30	2.00-2.45	2.00-2.45	1.20-2.00	2.80-3.00
Date Sampled				21/10/2013	24/10/2013	21/10/2013	21/10/2013	31/10/2013
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	11	14	43	7.4	58
Total mass of sample received	kg	0.001	NONE	0.66	0.41	0.65	0.54	0.43

pH	pH Units	N/A	MCERTS	7.3	7.5	-	-	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.10	0.10	-	0.099	-
Water Soluble Sulphate as SO_4 (2:1)	mg/kg	2.5	MCERTS	100	100	-	99	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.051	0.050	-	0.049	-
Organic Matter	%	0.1	MCERTS	-	-	8.9	-	13

Lab Sample Number				300878	300879	300880	300881	300882
Sample Reference				BH20	BH22	BH23	BH26	BH28
Sample Number				D11	D5	D4	D10	D9
Depth (m)				3.00-3.45	2.00-2.45	1.20-1.65	2.40	2.20
Date Sampled				23/10/2013	31/10/2013	21/10/2013	07/11/2013	01/11/2013
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	9.8	11	8.5	14	34
Total mass of sample received	kg	0.001	NONE	0.50	0.43	0.36	0.54	0.75

pH	pH Units	N/A	MCERTS	7.6	-	-	7.3	-
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	0.023	0.017	0.038	-	-
Water Soluble Sulphate as SO_4 (2:1)	mg/kg	2.5	MCERTS	23	17	38	-	-
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.011	0.0083	0.019	-	-
Organic Matter	%	0.1	MCERTS	-	-	-	-	5.9

Project / Site name: Stonehaven FAS

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care. Stone content

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Sample Number Lab Sample Sample Sample Description * Depth (m) Number Reference 300848 CDR1 D6 2.00-2.45 Light brown sandy topsoil. 300849 CDR1 B9 3.00-4.00 Black topsoil with peat. 300850 CDR2 B6 1.00-1.50 Light brown sandy topsoil with gravel. 300851 CDR3 D5 1.20-1.65 Brown sandy topsoil with peat and grave 300852 CDR3 D8 2.00-2.45 Black clay and topsoil with peat 300853 CDR3 B12 3.00-3.50 Black topsoil and sand with gravel. 300854 D15 5.00-5.45 CDR3 Light brown clay and sand. 300855 CDR3 D19 6.50-6.80 Light brown sandy clay with gravel 300856 CDR4 D3 0.60 Brown sandy topsoil with gravel 0.60-0.80 300857 CDR4 B4 Brown sandy topsoil with gravel 300858 CDR4 D7 1.20-1.65 Light brown gravelly sand 300859 BH1A B5 1.20-2.00 Light brown gravelly sand 300860 BH1A D11 3.30 Black clay and topsoil with peat. 300861 BH1A B17 5.10-5.60 Black topsoil with peat 300862 BH2 B6 0.80-1.00 Light brown gravelly sand 300863 BH3 D9 2.70 Black topsoil with peat. 300864 BH4 D5 2.00-2.45 Green sandy clay. 300865 BH4 D8 3.00-3.20 Black clay and topsoil with peat. 300866 BH5 D7 3.30-3.45 Black topsoil with peat. 300867 BH6 D4 1.20-1.65 Light brown gravelly sand with rubble. 300868 BH8 D8 2.00-2.45 ight brown gravelly sand with rubble 300869 BH9 D6 2.00-2.45 Light brown gravelly sand. 300870 BH10 B5 2.00-2.50 Light brown gravelly sand. 300871 BH11A D5 1.20-1.65 Light brown clay and sand with gravel. 300872 BH13 D4 2.00-2.45 Light brown clay and sand with gravel. 300873 BH14 B3 1.20-2.30 Light brown gravelly sand. 300874 BH15 D6 2.00-2.45 Light brown gravelly sand BH18 300875 D6 2.00-2.45 Grey topsoil with peat. 300876 BH18 1.20-2.00 B5 Light brown gravelly sand 300877 D9 2.80-3.00 BH19 Black clay and topsoil with peat. D11 300878 BH20 3.00-3.45 Light brown gravelly sand 300879 BH22 D5 2.00-2.45 Light brown gravelly sand 300880 BH23 D4 1.20-1.65 Light brown gravelly sand 300881 BH26 D10 2.40 Light brown clay. Black clay and topsoil with peat. 300882 BH28 D9 2.20

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Stones not passing through a 10 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Appendix 9

Appendix 9 - Geoenvironmental Test Results

I2 Analytical Ltd
UKAS No.4041
Report Numbers
48032
48469
48470
48474
48475
48476
48637

Michael Bridgman Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: michael.bridgman@costain.com

Analytical Report Number : 13-48032

Replaces Analytical Report Number : 13-48032, issue no. 1

Project / Site name:	Stonehaven F.A.S.	Samples received on:	12/11/2013
Your job number:	5414	Samples instructed on:	12/11/2013
Your order number:		Analysis completed by:	25/11/2013
Report Issue Number:	2	Report issued on:	25/11/2013
Samples Analysed:	6 water samples		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	 2 weeks from reporting
asbestos	- 6 months from reporting

Project / Site name: Stonehaven F.A.S.

Lab Sample Number				297359	297360	297361	297362	297363
Sample Reference				BH6	BH8	BH13	BH15	BH18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.59	2.79	3.04	1.50	1.85
Date Sampled				07/11/2013	07/11/2013	07/11/2013	07/11/2013	07/11/2013
Time Taken			_	1200	1215	1242	1230	1300
		•	A					
Analytical Parameter	ç	Lin	St					
(Water Analysis)	Units	Limit of detection	atu					
(-	on	Accreditation Status					
Concept Incompanies								
General Inorganics oH	pH Units	N/A	ISO 17025	7.9	7.9	7.5	7.3	7.4
Total Cyanide	pH Offics µg/l	10	ISO 17025 ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	ug/l	45	ISO 17025 ISO 17025	4160	38600	26500	24000	44200
	-3/-							
Total Phenols								
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Speciated PAHs								
Naphthalene	µq/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	ug/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH								
Total EPA-16 PAHs	µg/l	0.2	ISO 17025	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
· • • • • • • • • • • • • • • • • • • •			1					
Heavy Metals / Metalloids								1
Arsenic (dissolved)	µg/l	1	ISO 17025	3.1	1.6	2.5	2.3	3.6
Boron (dissolved)	µg/l	10	ISO 17025	100	32	12	26	21
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Chromium (dissolved)	µg/l	0.4	ISO 17025	1.7	6.7	7.8	6.4	6.6
Copper (dissolved)	µg/l	0.7	ISO 17025	2.4	3.1	21	2.9	4.4
Lead (dissolved)	µg/l	1 0.5	ISO 17025	1.1	3.3	3.2	3.5 < 0.5	4.4
Mercury (dissolved) Nickel (dissolved)	µg/l	0.5	ISO 17025	< 0.5 1.3	< 0.5 5.8	< 0.5 5.0	2.7	< 0.5 3.9
· · · · ·	µg/l		ISO 17025	5.7				
Zinc (dissolved)	µg/l	0.4	ISO 17025	5./	3.2	3.6	3.2	4.8

Petroleum Hydrocarbons

TPH1 (C10 - C40)	µg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	1.0,							

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven F.A.S.

Lab Sample Number	297364						
Sample Reference	BH21B						
Sample Number			None Supplied				
Depth (m)	1.92						
Date Sampled				07/11/2013			
Time Taken				1315			
			A				
Applytical Developmentary		Limit of detection	Accreditation Status				
Analytical Parameter	Units	bect	tati				
(Water Analysis)	60	ig e,	us				
			on				
General Inorganics							
pH	pH Units	N/A	ISO 17025	7.3			
Total Cyanide	µg/l	10	ISO 17025	< 10			
Sulphate as SO ₄	ug/l	45	ISO 17025	15300			
Total Phenols			1				
Total Phenols (monohydric)	µg/l	10	ISO 17025	< 10			
Creatisted DAlls							
Speciated PAHs		0.01	100.000				1
Naphthalene	µg/l	0.01	ISO 17025	< 0.01			
Acenaphthylene	µg/l	0.01	ISO 17025	< 0.01			
Acenaphthene	µg/l	0.01	ISO 17025	< 0.01			
Fluorene Phenanthrene	µg/l	0.01	ISO 17025 ISO 17025	< 0.01 < 0.01			
Anthracene	μg/l μg/l	0.01	ISO 17025 ISO 17025	< 0.01			
Fluoranthene	μg/i μg/l	0.01	ISO 17025	< 0.01			
Pyrene	μg/I μg/I	0.01	ISO 17025	< 0.01			
Benzo(a)anthracene	μg/i μg/l	0.01	ISO 17025	< 0.01			
Chrysene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01			
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01			
Dibenz(a,h)anthracene	µg/l	0.01	ISO 17025	< 0.01			
Benzo(ghi)perylene	µg/l	0.01	ISO 17025	< 0.01			
Total PAH							
Total EPA-16 PAHs	µg/l	0.2	ISO 17025	< 0.20			
Heavy Metals / Metalloids			1		ī		T
Arsenic (dissolved)	µg/l	1	ISO 17025	< 1.0			ļ
Boron (dissolved)	µg/l	10	ISO 17025	21			
Cadmium (dissolved)	µg/l	0.08	ISO 17025	< 0.08			ļ
Chromium (dissolved)	µg/l	0.4	ISO 17025	6.6			
Copper (dissolved)	µg/l	0.7	ISO 17025	10			
Lead (dissolved)	µg/l	1	ISO 17025	4.1	├		}
Mercury (dissolved)	µg/l	0.5	ISO 17025	< 0.5			
Nickel (dissolved)	µg/l	0.3	ISO 17025	4.8	├		}
Zinc (dissolved)	µg/l	0.4	ISO 17025	5.7			1

Petroleum Hydrocarbons

TPH1 (C10 - C40)							
	TPH1 (C10 - C40)	µg/l	10	NONE	< 10		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven F.A.S.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Boron in water	Determination of boron by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM	L039-PL	W	ISO 17025
Metals in water by ICP-OES (dissolved)	Determination of metals in water by acidification followed by ICP-OES. Accredited Matrices SW, GW, PW.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Monohydric phenols in water	Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Speciated EPA-16 PAHs in water	Determination of PAH compounds in water by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards. Accredited matrices: SW PW GW	In-house method based on USEPA 8270	L070-UK	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in water	Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
TPH1 (Waters)	Determination of dichloromethane extractable hydrocarbons in water by GC-MS.	In-house method	L070-UK	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Paice Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andy.paice@costain.com

Analytical Report Number : 13-48469

Project / Site name:	Stonehaven FAS	Samples received on:	22/11/2013
Your job number:	5414	Samples instructed on:	25/11/2013
Your order number:		Analysis completed by:	29/11/2013
Report Issue Number:	1	Report issued on:	29/11/2013
Samples Analysed:	2 soil samples		

tite Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Evcel conjec of reports a	re only valid when accomm	panied by this PDF certificate.
LACEI CUDIES UL LEDULS a	TE UTILY VAILU WHELT ACCUTIL	

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Project / Site name: Stonehaven FAS

Lab Sample Number				299926	200022		1
Lab Sample Number Sample Reference		299927					
Sample Kererence Sample Number	BH1A ES8	BH2 ES9	 				
Depth (m)				2.60	1.20-2.00		
			06/11/2013	06/11/2013			
Date Sampled Time Taken							
	1	1		None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	45	16		
Total mass of sample received	kg	0.001	NONE	1.6	2.0		
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected		
General Inorganics							
pH	pH Units	N/A	MCERTS	7.7	8.2	 	
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	 	
Water Soluble Sulphate (Soil Equivalent)	g/l	0.0025	MCERTS	1.6	0.048	 	
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	1600	48	 I	ļ
Water Soluble Sulphate (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.81	0.024	 	
Organic Matter	%	0.1	MCERTS	6.4	< 0.1	<u> </u>	<u> </u>
Total Phenols							
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10		
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	0.78		
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.20		
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	1.3		
Pyrene	mg/kg	0.2	MCERTS	< 0.20	0.74		
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10		
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	1	ļ
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		ļ
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Total PAH			r		-	 1	
Speciated Total EPA-16 PAHs	mg/kg	1.6	MCERTS	< 1.6	3.0		
Heavy Metals / Metalloids					<u> </u>	1	1
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	5.2	8.4		
Boron (water soluble)	mg/kg	0.2	MCERTS	19	< 0.2		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.0	< 0.2		
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	42	24		
Copper (aqua regia extractable)	mg/kg	1	MCERTS	56	12		
Lead (aqua regia extractable)	mg/kg	2	MCERTS	420	9.9		
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3		
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	25	23		
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	250	39		
Petroleum Hydrocarbons							

⁻ PH1 (C10 - C40)	mg/kg	10	MCERTS	610	50		

Project / Site name: Stonehaven FAS

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care. Stone content

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
299926	BH1A	ES8	2.60	Black topsoil with vegetation.
299927	BH2	ES9	1.20-2.00	Brown gravelly sand.

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil			L019-UK/PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES. Results reported corrected for extraction ratio (soil equivalent) as g/l and mg/kg; and upon the 2:1	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
TPH1 (Soil)	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method	L064-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Paice Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andy.paice@costain.com

Analytical Report Number : 13-48470

Project / Site name:	Stonehaven FAS	Samples received on:	22/11/2013
Your job number:	5414	Samples instructed on:	22/11/2013
Your order number:		Analysis completed by:	28/11/2013
Report Issue Number:	1	Report issued on:	28/11/2013

Samples Analysed:

Signed:

Dr Claire Stone

Quality Manager

For & on behalf of i2 Analytical Ltd.

1 water sample

6	
NN	
KX	

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Sampling date indicates that recommended time for holding samples prior to analysis for sulphate has been exceeded. The results for these parameters may be invalid and should be interpreted with care.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stonehaven FAS

Lab Sample Number				299928				
Sample Reference				CDR3				
Sample Number				W9				
Depth (m)			2.00					
Date Sampled			31/10/2013					
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
Sulphate as SO₄	ug/l	45	ISO 17025	17900				

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Paice Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andy.paice@costain.com

Analytical Report Number : 13-48474

Project / Site name:	Stonehaven FAS	Samples received on:	22/11/2013
Your job number:	5414	Samples instructed on:	22/11/2013
Your order number:		Analysis completed by:	28/11/2013
Report Issue Number:	1	Report issued on:	28/11/2013
Samples Analysed:	1 water sample		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Freed control of non-order one on	ly valid when accompanied by this PDF certificate.
EXCELCODIES OF FEDORES ARE OD	iv valid when accompanied by this PDF certificate
Exect copies of reports are on	y valid which accompanied by this i bi certificate.

Sampling date indicates that recommended time for holding samples prior to analysis for pH and sulphate has been exceeded. The results for these parameters may be invalid and should be interpreted with care.

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stonehaven FAS

Sample Reference Sample Number	BH5 W22	
	W/22	
	VVZZ	
Depth (m)	3.10	
Date Sampled	01/11/2013	
Time Taken	None Supplied	
Accreditation Status Limit of (Water Analysis)		

General morganics						
pH	pH Units	N/A	ISO 17025	8.5		
Sulphate as SO₄	ug/l	45	ISO 17025	23200		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Paice Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andy.paice@costain.com

Analytical Report Number : 13-48475

Project / Site name:	Stonehaven FAS	Samples received on:	22/11/2013
Your job number:	5414	Samples instructed on:	22/11/2013
Your order number:		Analysis completed by:	28/11/2013
Report Issue Number:	1	Report issued on:	28/11/2013
Samples Analysed:	1 water sample		

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Freed control of non-order one on	ly valid when accompanied by this PDF certificate.
EXCELCODIES OF FEDORES ARE OD	iv valid when accompanied by this PDF certificate
Exect copies of reports are on	y valid which accompanied by this i bi certificate.

Sampling date indicates that recommended time for holding samples prior to analysis for pH and sulphate has been exceeded. The results for these parameters may be invalid and should be interpreted with care.

Samples instructed on:	22/11/2013
Analysis completed by:	28/11/2013
Report issued on:	28/11/2013

Signed:

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Project / Site name: Stonehaven FAS

ab Sample Number	299949					
Sample Reference				BH19		
Sample Number			W15			
Depth (m)			1.90			
Date Sampled				01/11/2013		
me Taken				None Supplied		
nalytical Parameter S Nater Analysis)	Units	Limit of detection	Accreditation Status			

_	Selicital Inorganics						
	Н	pH Units	N/A	ISO 17025	8.1		
	Sulphate as SO₄	ug/l	45	ISO 17025	24500		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Andy Paice Costain Group PLC Unit 1 Allerton Bywater Network Centre Letchmire Road Allerton Bywater WF10 2DB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: andy.paice@costain.com

Analytical Report Number : 13-48476

Project / Site name:	Stonehaven FAS	Samples received on:	22/11/2013
Your job number:	5414	Samples instructed on:	22/11/2013
Your order number:		Analysis completed by:	28/11/2013
Report Issue Number:	1	Report issued on:	28/11/2013

Samples Analysed:

1 water sample

	Ø
Signady	Atchins
Signed:	

Rexona Rahman Customer Services Manager For & on behalf of i2 Analytical Ltd.

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Signed:

Dr Claire Stone Quality Manager For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Excel copies of reports are only valid when accompanied by this PDF certificate.

Samples were received with no indication of date sampled. The recommended holding time prior to analysis may have been exceeded. Results may not be valid should be interpreted with care.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Project / Site name: Stonehaven FAS

Lab Sample Number				299950		
Sample Reference				BH3		
Sample Number				W8		
Depth (m)			2.00			
Date Sampled			Deviating			
Time Taken				None Supplied		
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status			

General Thorganies						
pH	pH Units	N/A	ISO 17025	7.9		
Sulphate as SO₄	ug/l	45	ISO 17025	27700		

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: Stonehaven FAS

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH in water	Determination of pH in water by electrometric measurement. Accredited matrices: SW PW GW	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Sulphate in water	Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Southern Office Unit 10 Wessex Road Bourne End Buckinghamshire SL8 5DT Tel: 01628 648048 Northern Office Unit 1 Allerton Bywater Network Centre Letchmire Road West Yorkshire WF10 2DB Tel: 01977 515955

Visit us at:

www.costain.com/engineering-tomorrow/environmental-services/meeting-the-need.aspx

Costain Environmental Services

Issue 02 (Final) - 30.1.2014